Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Control Release ; 157(2): 297-304, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21884740

RESUMO

Chitosans are naturally occurring polymers widely used in life science to mediate intracellular uptake of nucleic acids such as siRNA. Four chitosans of fungal origin (Agaricus bisporus; molecular weights MW=44, 63, 93 and 143 kDa) were used in this study and profiled for size, viscosity and hydrodynamic radius using gel permeation chromatography (GPC). Polyplexes made of these chitosans and siRNA were developed and optimized for transfection efficacy in vitro. The characteristics of these polyplexes were low chitosan:siRNA ratios (4-8; N:P) similar positive zeta potential (20-30 mV) and comparable particle sizes (about 150 nm). Endogenous luciferase reporter gene down-regulation in human epithelial H1299 cells at nanomolar concentrations (37.5-150 nM) was significantly stronger for the lower molecular weight chitosans. The impact of these low N:P polyplexes on the cellular viability was minimal also at 150 nM. To help develop an understanding of these differences, an energetic profile of the molecular interactions and polyplex formation was established by isothermal titration calorimetry (ITC). The four polyplexes exhibited strong binding enthalpies delta H(bind)(-84 to -102 kcal/mol) resulting in nanomolar dissociation constants. Intracellular trafficking studies using rhodamine labeled siRNA revealed that polyplexes made from smaller MW chitosans exhibited faster cellular uptake kinetics than their higher MW counterpart. Transmission electron microscopy and small angle X-ray scattering studies (SAXS) revealed that the 44 kDa derived polyplexes exhibited regular spherical structure, whereas the 143 kDa chitosan polyplex was rather irregularly shaped. With regards to adverse effects these low N:P chitosan/siRNA formulations represent an interesting alternative to so far reported chitosan polyplexes that used vast N:P excess to achieve similar bioactivity.


Assuntos
Quitosana/química , Nanopartículas/química , RNA Interferente Pequeno/química , Linhagem Celular , Quitosana/administração & dosagem , Inativação Gênica , Genes Reporter/genética , Humanos , Luciferases/genética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , RNA Interferente Pequeno/administração & dosagem , Transfecção
2.
J Biol Chem ; 283(5): 2822-34, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18048360

RESUMO

The procoagulatory serine protease, thrombin, is known to induce invasion and metastasis in various cancers, but the mechanisms by which it promotes tumorigenesis are poorly understood. Because the 92-kDa gelatinase (MMP-9) is a known mediator of tumor cell invasion, we sought to determine whether and how thrombin regulates MMP-9. The thrombin receptor, PAR-1, and MMP-9 are expressed in osteosarcomas, as determined by immunohistochemistry. Stimulation of U2-OS osteosarcoma cells with thrombin and a thrombin receptor-activating peptide induced pro-MMP-9 secretion as well as cell surface-associated pro-MMP-9 expression and proteolytic activity. This was paralleled by an increase in MMP-9 mRNA and MMP-9 promoter activity. Thrombin-induced invasion of U2-OS cells through Matrigel was mediated by the phosphatidylinositol 3-kinase signaling pathway and could be inhibited with an MMP-9 antibody. The stimulation of MMP-9 by thrombin was paralleled by an increase in beta1-integrin mRNA and beta1-integrin expression on the cell surface, which was also mediated by phosphatidylinositol 3-kinase and was required for invasion. Thrombin activation induced and co-localized both beta1-integrin and pro-MMP-9 on the cell membrane, as evidenced by co-immunoprecipitation, confocal microscopy, and a protein binding assay. The thrombin-mediated association of these two proteins, as well as thrombin-mediated invasion of U2-OS cells, could be blocked with a cyclic peptide and with an antibody preventing binding of the MMP-9 hemopexin domain to beta1-integrin. These results suggest that thrombin induces expression and association of beta1-integrin with MMP-9 and that the cell surface localization of the protease by the integrin promotes tumor cell invasion.


Assuntos
Integrina beta1/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Invasividade Neoplásica/fisiopatologia , Trombina/farmacologia , Trombina/fisiologia , Sequência de Aminoácidos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/genética , Modelos Biológicos , Dados de Sequência Molecular , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Appl Environ Microbiol ; 68(8): 3708-15, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12147463

RESUMO

The glycan chains of the surface layer (S-layer) glycoprotein from the gram-positive, thermophilic bacterium Aneurinibacillus (formerly Bacillus) thermoaerophilus strain DSM 10155 are composed of L-rhamnose- and D-glycero-D-manno-heptose-containing disaccharide repeating units which are linked to the S-layer polypeptide via core structures that have variable lengths and novel O-glycosidic linkages. In this work we investigated the enzymes involved in the biosynthesis of thymidine diphospho-L-rhamnose (dTDP-L-rhamnose) and their specific properties. Comparable to lipopolysaccharide O-antigen biosynthesis in gram-negative bacteria, dTDP-L-rhamnose is synthesized in a four-step reaction sequence from dTTP and glucose 1-phosphate by the enzymes glucose-1-phosphate thymidylyltransferase (RmlA), dTDP-D-glucose 4,6-dehydratase (RmlB), dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC), and dTDP-4-dehydrorhamnose reductase (RmlD). The rhamnose biosynthesis operon from A. thermoaerophilus DSM 10155 was sequenced, and the genes were overexpressed in Escherichia coli. Compared to purified enterobacterial Rml enzymes, the enzymes from the gram-positive strain show remarkably increased thermostability, a property which is particularly interesting for high-throughput screening and enzymatic synthesis. The closely related strain A. thermoaerophilus L420-91(T) produces D-rhamnose- and 3-acetamido-3,6-dideoxy-D-galactose-containing S-layer glycan chains. Comparison of the enzyme activity patterns in A. thermoaerophilus strains DSM 10155 and L420-91(T) for L-rhamnose and D-rhamnose biosynthesis indicated that the enzymes are differentially expressed during S-layer glycan biosynthesis and that A. thermoaerophilus L420-91(T) is not able to synthesize dTDP-L-rhamnose. These findings confirm that in each strain the enzymes act specifically on S-layer glycoprotein glycan formation.


Assuntos
Bactérias Gram-Positivas/enzimologia , Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotidiltransferases/genética , Salmonella enterica/enzimologia , Nucleotídeos de Timina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Citoplasma/enzimologia , Bactérias Gram-Positivas/metabolismo , Cinética , Dados de Sequência Molecular , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Salmonella enterica/genética , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA