Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(5): e15099, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38794814

RESUMO

Suitable human models for the development and characterization of topical compounds for inflammatory skin diseases such as atopic dermatitis are not readily available to date. We describe here the development of a translational model involving healthy human skin mimicking major aspects of AD and its application for the characterization of topical Janus kinase inhibitors. Full thickness human abdominal skin obtained from plastic surgery stimulated in vitro with IL4 and IL13 shows molecular features of AD. This is evidenced by STAT6 phosphorylation assessed by immunohistochemistry and analysis of skin lysates. Broad transcriptome changes assessed by AmpliSeq followed by gene set variation analysis showed a consistent upregulation of gene signatures characterizing AD in this model. Topical application of experimental formulations of compounds targeting the JAK pathway to full thickness skin normalizes the molecular features of AD induced by IL4 and IL13 stimulation. The inhibitory effects of topical JAK inhibitors on molecular features of AD are supported by pharmacokinetic analysis. The model described here is suited for the characterization of topical compounds for AD and has the potential to be extended to other inflammatory skin diseases and pathophysiological pathways.


Assuntos
Dermatite Atópica , Inibidores de Janus Quinases , Pele , Humanos , Dermatite Atópica/tratamento farmacológico , Pele/metabolismo , Pele/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Fator de Transcrição STAT6/metabolismo , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Fosforilação , Transcriptoma , Modelos Biológicos , Pirimidinas/farmacologia , Administração Tópica , Piperidinas
3.
Nature ; 594(7864): 566-571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079127

RESUMO

The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment1-3. These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis4 that is often associated with a poor prognosis5. Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-γ signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth.


Assuntos
Neoplasias da Mama/patologia , Células Estreladas do Fígado/citologia , Células Matadoras Naturais/citologia , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Feminino , Humanos , Imunoterapia , Interferon gama , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neoplasias Experimentais/patologia , Proteômica , Transcriptoma , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA