Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732013

RESUMO

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Assuntos
Ácido Abscísico , Receptor ERRalfa Relacionado ao Estrogênio , Metabolismo Energético , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Humanos , Animais , Ácido Abscísico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Cancers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539556

RESUMO

Pediatric pilocytic astrocytoma (PA) is the most common brain tumor in children. Complete resection provides a favorable prognosis, except for unresectable PA forms. There is an incomplete understanding of the molecular and cellular pathogenesis of PA. Potential biomarkers for PA patients, especially the non-BRAF-mutated ones are needed. Cerebrospinal fluid (CSF) is a valuable source of brain tumor biomarkers. Extracellular vesicles (EVs), circulating in CSF, express valuable disease targets. These can be isolated from CSF from waste extraventricular drainage (EVD). We analyzed the proteome of EVD CSF from PA, congenital hydrocephalus (CH, non-tumor control), or medulloblastoma (MB, unrelated tumoral control) patients. A total of 3072 proteins were identified, 47.1%, 65.6%, and 86.2% of which were expressed in the unprocessed total and in its large-EV (LEV), and small-EV (SEV) fractions. Bioinformatics identified 50 statistically significant proteins in the comparison between PA and HC, and PA and MB patients, in the same fractions. Kinase enrichment analysis predicted five enriched kinases involved in signaling. Among these, only Cyclin-dependent kinase 2 (CDK2) kinase was overexpressed in PA samples. PLS-DA highlighted the inactive carboxypeptidase-like protein X2 (CPXM2) and aquaporin-4 (AQP4) as statistically significant in all the comparisons, with CPXM2 being overexpressed (validated by ELISA and Western blot) and AQP4 downregulated in PA. These proteins were considered the most promising potential biomarkers for discriminating among pilocytic astrocytoma and unrelated tumoral (MB) or non-tumoral conditions in all the fractions examined, and are proposed to be prospectively validated in the plasma for translational medicine applications.

3.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136601

RESUMO

Cerebrospinal fluid (CSF) is a biochemical-clinical window into the brain. Unfortunately, its wide dynamic range, low protein concentration, and small sample quantity significantly limit the possibility of using it routinely. Extraventricular drainage (EVD) of CSF allows us to solve quantitative problems and to study the biological role of extracellular vesicles (EVs). In this study, we implemented bioinformatic analysis of our previous data of EVD of CSF and its EVs obtained from congenital hydrocephalus with the aim of identifying a comprehensive list of potential tumor and non-tumor biomarkers of central nervous system diseases. Among all proteins identified, those enriched in EVs are associated with synapses, synaptosomes, and nervous system diseases including gliomas, embryonal tumors, and epilepsy. Among these EV-enriched proteins, given the broad consensus present in the recent scientific literature, we validated syntaxin-binding protein 1 (STXBP1) as a marker of malignancy in EVD of CSF and its EVs from patients with pilocytic astrocytoma and medulloblastoma. Our results show that STXBP1 is negatively enriched in EVs compared to non-tumor diseases and its downregulation correlates with adverse outcomes. Further experiments are needed to validate this and other EV markers in the blood of pediatric patients for translational medicine applications.


Assuntos
Doenças do Sistema Nervoso Central , Vesículas Extracelulares , Criança , Humanos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Vesículas Extracelulares/metabolismo , Proteômica/métodos
4.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762196

RESUMO

Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.


Assuntos
Vesículas Extracelulares , Glomerulonefrite , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Proteômica , Glomerulonefrite/patologia , Nefropatias/patologia , Vesículas Extracelulares/patologia , Biomarcadores , Rim/patologia
5.
Kidney Int Rep ; 8(9): 1852-1863, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705917

RESUMO

Introduction: The complete systemic deregulated biological network in patients on peritoneal dialysis (PD) is still only partially defined. High-throughput/omics techniques may offer the possibility to analyze the main biological fingerprints associated with this clinical condition. Methods: We applied an innovative bioinformatic analysis of gene expression microarray data (mainly based on support vector machine (SVM) learning) to compare the transcriptomic profile of peripheral blood mononuclear cells (PBMCs) of healthy subjects (HS), chronic kidney disease (CKD) patients, and patients on PD divided into a microarray group (5 HS, 9 CKD, and 10 PD) and a validation group (10 HS, 15 CKD, and 15 PD). Classical well-standardized biomolecular approaches (western blotting and flow cytometry) were used to validate the transcriptomic results. Results: Bioinformatics revealed a distinctive PBMC transcriptomic profiling for PD versus CKD and HS (n = 419 genes). Transcripts encoding for key elements of the autophagic pathway were significantly upregulated in PD, and the autophagy related 5 (ATG5) reached the top level of discrimination [-Log10 P-value = 11.3, variable importance in projection (VIP) score = 4.8, SVM rank:1]. Protein levels of ATG5 and microtubule associated protein 1 light chain 3 beta (LC3B), an important constituent of the autophagosome, validated microarray results. In addition, the incubation of PBMCs of HS with serum of patients on PD upregulated both proteins. Autophagy in PBMCs from patients on PD was attenuated by N-acetyl-cysteine or Resatorvid treatment. Conclusions: Our data demonstrated, for the first time, that the autophagy pathway is activated in immune-cells of patients on PD, and this may represent a novel therapeutic target.

6.
Kidney Blood Press Res ; 47(12): 683-692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36265463

RESUMO

BACKGROUND: Medullary sponge kidney (MSK) disease is a rare and neglected congenital condition typically associated with nephrocalcinosis/nephrolithiasis, urinary concentration defects, and cystic anomalies in the precalyceal ducts that, although sporadic in the general population, is relatively frequent in renal stone formers. The physiopathologic mechanism associated with this disease is not fully understood, and omics technologies may help address this gap. SUMMARY: The aim of this review was to provide an overview of the current state of the application of proteomics in the study of this rare disease. In particular, we focused on the results of our recent Italian collaborative studies that, analyzing the MSK whole and extracellular vesicle urinary content by mass spectrometry, have displayed the existence of a large and multifactorial MSK-associated biological machinery and identified some main regulatory biological elements able to discriminate patients affected by this rare disorder from those with idiopathic calcium nephrolithiasis and autosomal dominant polycystic kidney disease (including laminin subunit alpha 2, ficolin 1, mannan-binding lectin serine protease 2, complement component 4-binding protein ß, sphingomyelin, ephrins). KEY MESSAGES: The application of omics technologies has provided new insights into the comprehension of the physiopathology of the MSK disease and identified novel potential diagnostic biomarkers that may replace in future expensive and invasive radiological tests (including CT) and select novel therapeutic targets potentially employable, whether validated in a large cohort of patients, in the daily clinical practice.


Assuntos
Vesículas Extracelulares , Cálculos Renais , Rim em Esponja Medular , Nefrocalcinose , Humanos , Rim em Esponja Medular/complicações , Rim em Esponja Medular/patologia , Proteômica , Cálculos Renais/patologia
7.
Metabolites ; 12(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005596

RESUMO

Medulloblastoma (MB) is the most common pediatric malignant central nervous system tumor. Overall survival in MB depends on treatment tuning. There is aneed for biomarkers of residual disease and recurrence. We analyzed the proteome of waste cerebrospinal fluid (CSF) from extraventricular drainage (EVD) from six children bearing various subtypes of MB and six controls needing EVD insertion for unrelated causes. Samples included total CSF, microvesicles, exosomes, and proteins captured by combinatorial peptide ligand library (CPLL). Liquid chromatography-coupled tandem mass spectrometry proteomics identified 3560 proteins in CSF from control and MB patients, 2412 (67.7%) of which were overlapping, and 346 (9.7%) and 805 (22.6%) were exclusive. Multidimensional scaling analysis discriminated samples. The weighted gene co-expression network analysis (WGCNA) identified those modules functionally associated with the samples. A ranked core of 192 proteins allowed distinguishing between control and MB samples. Machine learning highlighted long-chain fatty acid transport protein 4 (SLC27A4) and laminin B-type (LMNB1) as proteins that maximized the discrimination between control and MB samples. Machine learning WGCNA and support vector machine learning were able to distinguish between MB versus non-tumor/hemorrhagic controls. The two potential protein biomarkers for the discrimination between control and MB may guide therapy and predict recurrences, improving the MB patients' quality of life.

8.
Curr Pediatr Rev ; 18(2): 153-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086453

RESUMO

BACKGROUND: Very low birth weight infants are at risk of developing periventricular white matter lesions. We previously reported high blood adenosine levels in premature infants and infants with low birth weight. We asked whether blood adenosine levels could be related to the vulnerability of the maturing white matter to develop lesions. The present study aims at finding a biomarker for the early detection of brain white matter lesions that can profoundly influence the neurodevelopmental outcome, whose pathophysiology is still unclear. METHODS: Dried blood spots were prospectively collected for the newborn screening program and adenosine concentration measurements. Fifty-six newborns who tested four times for blood adenosine concentration (at days 3, 15, 30, and 40 post-birth) were included in the program. All infants underwent brain MRI at term equivalent age. Neurodevelopmental outcomes were studied with Griffiths Mental Development Scales (GMDS) at 12 ± 2 months corrected age. RESULTS: Blood adenosine concentration increased over time from a median of 0.75 µM at Day 3 to 1.46 µM at Day 40. Adenosine blood concentration >1.58 µM at Day 15 was significantly associated with brain white matter lesions at MRI (OR (95 % CI) of 50.0 (3.6-688.3), p-value < 0.001). A moderate negative correlation between adenosine at 15 days of life and GMDS at 12 ± 2 months corrected age was found. CONCLUSION: These findings suggest a potential role for blood adenosine concentration as a biomarker of creberal white matter lesions in very low birth weight infants.


Assuntos
Substância Branca , Adenosina , Biomarcadores , Encéfalo/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
9.
Sci Rep ; 11(1): 23144, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848816

RESUMO

Spontaneous preterm birth (PTB) complicates about 12% of pregnancies worldwide, remaining the main cause of neonatal morbidity and mortality. Spontaneous preterm birth PTBs is often caused by microbial-induced preterm labor, mediated by an inflammatory process threatening both maternal and newborn health. In search for novel predictive biomarkers of PTB and preterm prelabor rupture of the membranes (pPROM), and to improve understanding of infection related PTB, we performed an untargeted mass spectrometry discovery study on 51 bioptic mid zone amnion samples from premature babies. A total of 6352 proteins were identified. Bioinformatics analyses revealed a ranked core of 159 proteins maximizing the discrimination between the selected clinical stratification groups allowing to distinguish conditions of absent (FIR 0) from maximal Fetal Inflammatory Response (FIR 3) stratified in function of Maternal Inflammatory Response (MIR) grade. Matrix metallopeptidase-9 (MMP-9) was the top differentially expressed protein. Gene Ontology enrichment analysis of the core proteins showed significant changes in the biological pathways associated to inflammation and regulation of immune and infection response. Data suggest that the conditions determining PTB would be a transversal event, secondary to the maternal inflammatory response causing a breakdown in fetal-maternal tolerance, with fetal inflammation being more severe than maternal one. We also highlight matrix metallopeptidase-9 as a potential predictive biomarker of PTB that can be assayed in the maternal serum, for future investigation.


Assuntos
Âmnio/metabolismo , Âmnio/fisiologia , Biomarcadores/metabolismo , Proteômica/métodos , Biologia Computacional/métodos , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Unidades de Terapia Intensiva Neonatal , Análise dos Mínimos Quadrados , Espectrometria de Massas/métodos , Metaloproteinase 9 da Matriz/metabolismo , Peptídeos/química , Gravidez , Nascimento Prematuro , Ligação Proteica , Proteoma , Medição de Risco , Inibidor Tecidual de Metaloproteinase-1/metabolismo
10.
Autoimmun Rev ; 20(12): 102977, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718161

RESUMO

Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Especificidade de Anticorpos , Autoanticorpos , Autoantígenos , Humanos , Fosfopiruvato Hidratase
11.
Sci Rep ; 11(1): 1818, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469081

RESUMO

Brain tumors are the most common solid tumors in childhood. There is the need for biomarkers of residual disease, therapy response and recurrence. Cerebrospinal fluid (CSF) is a source of brain tumor biomarkers. We analyzed the proteome of waste CSF from extraventricular drainage (EVD) from 29 children bearing different brain tumors and 17 controls needing EVD insertion for unrelated causes. 1598 and 1526 proteins were identified by liquid chromatography-coupled tandem mass spectrometry proteomics in CSF control and brain tumor patients, respectively, 263 and 191 proteins being exclusive of either condition. Bioinformatic analysis revealed promising protein biomarkers for the discrimination between control and tumor (TATA-binding protein-associated factor 15 and S100 protein B). Moreover, Thymosin beta-4 (TMSB4X) and CD109, and 14.3.3 and HSP90 alpha could discriminate among other brain tumors and low-grade gliomas plus glyoneuronal tumors/pilocytic astrocytoma, or embryonal tumors/medulloblastoma. Biomarkers were validated by ELISA assay. Our method was able to distinguish among brain tumor vs non-tumor/hemorrhagic conditions (controls) and to differentiate two large classes of brain tumors. Further prospective studies may assess whether the biomarkers proposed by our discovery approach can be identified in other bodily fluids, therefore less invasively, and are useful to guide therapy and predict recurrences.


Assuntos
Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas/líquido cefalorraquidiano , Ventrículos Cerebrais/fisiopatologia , Proteômica/métodos , Estudos de Casos e Controles , Criança , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática , Humanos , Máquina de Vetores de Suporte , Espectrometria de Massas em Tandem/métodos
12.
Rheumatology (Oxford) ; 60(7): 3176-3188, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33374003

RESUMO

OBJECTIVES: Serum anti-dsDNA and anti-nucleosome IgGs have been proposed as signatures for SLE and LN in limited numbers of patients. We sought to show higher sensitivity and specificity of the same antibodies with the IgG2 isotype and included IgG2 antibodies vs specific intracellular antigens in the analysis. METHODS: A total of 1052 SLE patients with (n = 479) and without (n = 573) LN, recruited at different times from the beginning of symptoms, were included in the study. Patients with primary APS (PAPS, n = 24), RA (RA, n = 24) and UCTD (UCTD, n = 96) were analysed for comparison. Anti-nucleosome (dsDNA, Histone2A, Histone3), anti-intracellular antigens (ENO1), anti-annexin A1 and anti-C1q IgG2 were determined by non-commercial techniques. RESULTS: The presence in the serum of the IgG2 panel was highly discriminatory for SLE/LN vs healthy subjects. Serum levels of anti-dsDNA and anti-C1q IgG2 were more sensitive than those of IgGs (Farr radioimmunoassay/commercial assays) in identifying SLE patients at low-medium increments. Of more importance, serum positivity for anti-ENO1 and anti-H2A IgG2 discriminated between LN and SLE (ROC T0-12 months), and high levels at T0-1 month were detected in 63% and 67%, respectively, of LN, vs 3% and 3%, respectively, of SLE patients; serum positivity for each of these was correlated with high SLEDAI values. Minor differences existed between LN/SLE and the other rheumatologic conditions. CONCLUSION: Nephritogenic IgG2 antibodies represent a specific signature of SLE/LN, with a few overlaps with other rheumatologic conditions. High levels of anti-ENO1 and anti-H2A IgG2 correlated with SLE activity indexes and were discriminatory between SLE patients limited to the renal complication and other SLE patients. TRIAL REGISTRATION: The Zeus study was registered at https://clinicaltrials.gov, NCT02403115.


Assuntos
Anticorpos Antinucleares/imunologia , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Adolescente , Adulto , Anexina A1/imunologia , Especificidade de Anticorpos , Síndrome Antifosfolipídica/imunologia , Artrite Reumatoide/imunologia , Biomarcadores Tumorais/imunologia , Complemento C1q/imunologia , Estudos Transversais , DNA/imunologia , Proteínas de Ligação a DNA/imunologia , Feminino , Histonas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Nucleossomos/imunologia , Fosfopiruvato Hidratase/imunologia , Proteínas Supressoras de Tumor/imunologia , Doenças do Tecido Conjuntivo Indiferenciado/imunologia , Adulto Jovem
13.
Rheumatology (Oxford) ; 60(7): 3388-3397, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33351137

RESUMO

OBJECTIVES: Circulating anti-ENO1 and anti-H2A IgG2 have been identified as specific signatures of LN in a cross-over approach. We sought to show whether the same antibodies identify selected population of patients with LN with potentially different clinical outcomes. METHODS: Here we report the prospective analysis over 36 months of circulating IgG2 levels in patients with newly diagnosed LN (n=91) and SLE (n=31) and in other patients with SLE recruited within 2 years from diagnosis (n=99). Anti-podocyte (ENO1), anti-nucleosome (DNA, histone 2 A, histone 3) and anti-circulating proteins (C1q, AnnexinA1-ANXA1) IgG2 antibodies were determined by home-made techniques. RESULTS: LN patients were the main focus of the study. Anti-ENO1, anti-H2A and anti-ANXA1 IgG2 decreased in parallel to proteinuria and normalized within 12 months in the majority of patients while anti-dsDNA IgG2 remained high over the 36 months. Anti-ENO1 and anti-H2A had the highest association with proteinuria (Heat Map) and identified the highest number of patients with high proteinuria (68% and 71% respectively) and/or with reduced estimated glomerula filtration rate (eGFR) (58% for both antibodies) compared with 23% and 17% of anti-dsDNA (agreement analysis). Anti-ENO1 positive LN patients had higher proteinuria than negative patients at T0 and presented the maximal decrement within 12 months. CONCLUSIONS: Anti-ENO1, anti-H2A and anti-ANXA1 antibodies were associated with high proteinuria in LN patients and Anti-ENO1 also presented the maximal reduction within 12 months that paralleled the decrease of proteinuria. Anti-dsDNA were not associated with renal outcome parameters. New IgG2 antibody signatures should be utilized as tracers of personalized therapies in LN. TRIAL REGISTRATION: The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).


Assuntos
Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Adulto , Anexina A1/imunologia , Anticorpos Antinucleares/imunologia , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Complemento C1q/imunologia , DNA/imunologia , Proteínas de Ligação a DNA/imunologia , Progressão da Doença , Feminino , Histonas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Nucleossomos/imunologia , Fosfopiruvato Hidratase/imunologia , Estudos Prospectivos , Proteínas Supressoras de Tumor/imunologia
14.
Clin J Am Soc Nephrol ; 15(12): 1762-1776, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33257410

RESUMO

BACKGROUND AND OBJECTIVES: Patients with membranous nephropathy can have circulating autoantibodies against membrane-bound (phospholipase A2 receptor 1 [PLA2R1] and thrombospondin type-1 domain containing 7A [THSD7A]) and intracellular (aldose reductase, SOD2, and α-enolase) podocyte autoantigens. We studied their combined association with clinical outcomes. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Serum levels of anti-PLA2R1, anti-THSD7A, anti-aldose reductase, anti-SOD2, and anti-α-enolase autoantibodies were determined in 285 patients at diagnosis and during follow-up using standardized and homemade assays. An eGFR>60 ml/min per 1.73 m2 and remission of proteinuria (<0.3/<3.5 g per d) after 12 months were the outcomes of interest. RESULTS: At diagnosis, 182 (64%), eight (3%), and 95 (33%) patients were anti-PLA2R1+, anti-THSD7A+, and double negative, respectively. The prevalence of a detectable antibody to at least one intracellular antigen was similarly distributed in patients who were anti-PLA2R1+ (n=118, 65%) and double negative (n=64, 67%). Positivity for anti-PLA2R1, anti-SOD2, and anti-α-enolase antibodies and higher titers at diagnosis were associated with poor clinical outcome independently to each other. Combined positivity for anti-PLA2R1, anti-SOD2, and anti-α-enolase was associated with highest risk of poor outcome (odds ratio, 5.5; 95% confidence interval, 1.2 to 24; P=0.01). In Kaplan-Meier analysis, patients who were anti-PLA2R1+/anti-SOD2+ or anti-PLA2R1+/anti-α-enolase+ had lower eGFR at 12 months compared with patients who were anti-PLA2R1+/anti-SOD2- or anti-α-enolase-. Predictive tests (net reclassification index and area under the curve-receiver-operating characteristic analysis) showed that combined assessment of antibodies improved classification of outcome in 22%-34% of cases for partial remission of proteinuria and maintenance of normal eGFR. For patients with nephrotic syndrome at diagnosis, anti-SOD2 positivity and high anti-PLA2R1 titer were associated with a lack of complete remission. Patients who were anti-PLA2R1-/anti-intracellular antigens- had the lowest proteinuria and the highest eGFR at diagnosis and the lowest risk of lower eGFR at 12 months. Epitope spreading was present in 81% of patients who were anti-PLA2R1+ and was associated with increased positivity for intracellular antigens and poor eGFR at diagnosis and 12 months. CONCLUSIONS: Combined serological analysis of autoantibodies targeting membrane-bound and intracellular autoantigens identifies patients with poor clinical outcomes.


Assuntos
Aldeído Redutase/imunologia , Autoanticorpos/sangue , Biomarcadores Tumorais/imunologia , Proteínas de Ligação a DNA/imunologia , Glomerulonefrite Membranosa/imunologia , Fosfopiruvato Hidratase/imunologia , Receptores da Fosfolipase A2/imunologia , Superóxido Dismutase/imunologia , Trombospondinas/imunologia , Proteínas Supressoras de Tumor/imunologia , Adulto , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , França , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/terapia , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Testes Sorológicos , Fatores de Tempo
15.
Front Immunol ; 11: 1484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903887

RESUMO

Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.


Assuntos
Injúria Renal Aguda/imunologia , Células Epiteliais/fisiologia , Inflamação/imunologia , Túbulos Renais/patologia , Células Matadoras Naturais/imunologia , Animais , Humanos , Imunidade Inata
16.
FASEB Bioadv ; 2(5): 315-324, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32395704

RESUMO

PURPOSE: The retinal rod outer segment (OS) disk membranes, devoid of mitochondria, conducts oxidative phosphorylation (OxPhos). This study aimed at identifying which proteins expressed in the retinal rod OS disks determined the considerable adenosine-5'-triphosphate production and oxygen consumption observed in comparison with retinal mitochondria. PROCEDURES: Characterization was conducted by immunogold transmission electron microscopy on retinal sections. OxPhos was studied by oximetry and luminometry. The proteomes of OS disks and mitochondria purified from bovine retinas were studied by mass spectrometry. Statistical and bioinformatic analyses were conducted by univariate, multivariate, and machine learning methods. RESULTS: Weighted gene coexpression network analysis identified two protein expression profile modules functionally associated with either retinal mitochondria or disk samples, in function of a strikingly different ability of each sample to utilized diverse substrate for F1Fo-ATP synthase. The OS disk proteins correlated better than mitochondria with the tricarboxylic acids cycle and OxPhos proteins. CONCLUSIONS: The differential enrichment of the expression profile of the OxPhos proteins in the disks versus mitochondria suggests that these proteins may represent a true proteome component of the former, with different functionality. These findings may shed new light on the pathogenesis of rod-driven retinal degenerative diseases.

17.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694344

RESUMO

Medullary sponge kidney (MSK) disease is a rare and neglected kidney condition often associated with nephrocalcinosis/nephrolithiasis and cystic anomalies in the precalyceal ducts. Little is known about the pathogenesis of this disease, so we addressed the knowledge gap using a proteomics approach. The protein content of microvesicles/exosomes isolated from urine of 15 MSK and 15 idiopathic calcium nephrolithiasis (ICN) patients was investigated by mass spectrometry, followed by weighted gene coexpression network analysis, support vector machine (SVM) learning, and partial least squares discriminant analysis (PLS-DA) to select the most discriminative proteins. Proteomic data were verified by ELISA. We identified 2998 proteins in total, 1764 (58.9%) of which were present in both vesicle types in both diseases. Among the MSK samples, only 65 (2.2%) and 137 (4.6%) proteins were exclusively found in the microvesicles and exosomes, respectively. Similarly, among the ICN samples, only 75 (2.5%) and 94 (3.1%) proteins were exclusively found in the microvesicles and exosomes, respectively. SVM learning and PLS-DA revealed a core panel of 20 proteins that distinguished extracellular vesicles representing each clinical condition with an accuracy of 100%. Among them, three exosome proteins involved in the lectin complement pathway maximized the discrimination between MSK and ICN: Ficolin 1, Mannan-binding lectin serine protease 2, and Complement component 4-binding protein ß. ELISA confirmed the proteomic results. Our data show that the complement pathway is involved in the MSK, revealing a new range of potential therapeutic targets and early diagnostic biomarkers.


Assuntos
Proteínas do Sistema Complemento/análise , Vesículas Extracelulares/patologia , Rim em Esponja Medular/urina , Proteínas/análise , Adulto , Exossomos/química , Exossomos/patologia , Vesículas Extracelulares/química , Feminino , Humanos , Masculino , Rim em Esponja Medular/patologia , Nefrolitíase/patologia , Nefrolitíase/urina , Proteômica
18.
Sci Rep ; 9(1): 7934, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138830

RESUMO

NETs constitute a network of DNA and proteins released by neutrophils in response to infectious and immunologic triggers. NET proteins are recognized as autoantigens in ANCA vasculitis; limited knowledge is available in other autoimmune pathologies. The composition of NETs produced ex vivo by resting and Phorbol-myristate acetate (PMA) stimulated neutrophils was analyzed by high-throughput Fusion Orbitrap technology in 16 patients with Systemic Lupus Erythematosus/Lupus nephritis (9 SLE/7 LN) and in 11 controls. Seven-hundred proteins were characterized and specific fingerprints discriminated LN from SLE. We focused on methyl-oxidized αenolase (methionine sulfoxide 93) that was markedly increased in NETs from LN and was localized in NET filaments in tight connection and outlying DNA. The isotype of anti-αenolase antibodies was IgG2 in LN and IgG4 in other autoimmune glomerulonephritis (Membranous Nephropathy, MN); serum anti-αenolase IgG2 were higher in LN than in SLE and absent in MN. The same IgG2 antibodies recognized 5 epitopes of the protein one containing methionine sulphoxide 93. In conclusion, specific NET protein fingerprints characterize different subsets of SLE; methyl-oxidized αenolase is over-expressed in LN. Circulating anti-αenolase IgG2 recognize the oxidized epitope and are high in serum of LN patients. Post-translational modified NET proteins contribute to autoimmunity in patients with LN.


Assuntos
Biomarcadores Tumorais/análise , Proteínas de Ligação a DNA/análise , Armadilhas Extracelulares/química , Nefrite Lúpica/patologia , Metionina/análogos & derivados , Fosfopiruvato Hidratase/análise , Proteínas Supressoras de Tumor/análise , Adolescente , Adulto , Idoso , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/imunologia , Armadilhas Extracelulares/imunologia , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , Humanos , Nefrite Lúpica/sangue , Nefrite Lúpica/imunologia , Metionina/análise , Metionina/imunologia , Pessoa de Meia-Idade , Modelos Moleculares , Oxirredução , Fosfopiruvato Hidratase/imunologia , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Supressoras de Tumor/imunologia , Adulto Jovem
19.
Clin J Am Soc Nephrol ; 14(6): 834-843, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018934

RESUMO

BACKGROUND AND OBJECTIVES: Microvesicles and exosomes are involved in the pathogenesis of autosomal dominant polycystic kidney disease. However, it is unclear whether they also contribute to medullary sponge kidney, a sporadic kidney malformation featuring cysts, nephrocalcinosis, and recurrent kidney stones. We addressed this knowledge gap by comparative proteomic analysis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The protein content of microvesicles and exosomes isolated from the urine of 15 patients with medullary sponge kidney and 15 patients with autosomal dominant polycystic kidney disease was determined by mass spectrometry followed by weighted gene coexpression network analysis, support vector machine learning, and partial least squares discriminant analysis to compare the profiles and select the most discriminative proteins. The proteomic data were verified by ELISA. RESULTS: A total of 2950 proteins were isolated from microvesicles and exosomes, including 1579 (54%) identified in all samples but only 178 (6%) and 88 (3%) specific for medullary sponge kidney microvesicles and exosomes, and 183 (6%) and 98 (3%) specific for autosomal dominant polycystic kidney disease microvesicles and exosomes, respectively. The weighted gene coexpression network analysis revealed ten modules comprising proteins with similar expression profiles. Support vector machine learning and partial least squares discriminant analysis identified 34 proteins that were highly discriminative between the diseases. Among these, CD133 was upregulated in exosomes from autosomal dominant polycystic kidney disease and validated by ELISA. CONCLUSIONS: Our data indicate a different proteomic profile of urinary microvesicles and exosomes in patients with medullary sponge kidney compared with patients with autosomal dominant polycystic kidney disease. The urine proteomic profile of patients with autosomal dominant polycystic kidney disease was enriched of proteins involved in cell proliferation and matrix remodeling. Instead, proteins identified in patients with medullary sponge kidney were associated with parenchymal calcium deposition/nephrolithiasis and systemic metabolic derangements associated with stones formation and bone mineralization defects. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2019_04_24_CJASNPodcast_19_06_.mp3.


Assuntos
Antígeno AC133/urina , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Rim em Esponja Medular/urina , Rim Policístico Autossômico Dominante/urina , Transcriptoma , Adulto , Feminino , Expressão Gênica , Humanos , Masculino , Rim em Esponja Medular/genética , Rim Policístico Autossômico Dominante/genética , Proteoma , Adulto Jovem
20.
Expert Rev Proteomics ; 15(10): 801-808, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253662

RESUMO

INTRODUCTION: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes. Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs' role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis. Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Medicina de Precisão/métodos , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA