Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Genome Med ; 16(1): 72, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811945

RESUMO

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Assuntos
Deficiência Intelectual , Transcriptoma , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Deficiência Intelectual/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Peixe-Zebra/genética
2.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

3.
Eur J Hum Genet ; 31(11): 1228-1236, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36879111

RESUMO

Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.


Assuntos
Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Feminino , Humanos , Masculino , Mães , Alelos , Cromossomos , Cromossomos Humanos X/genética , Proteínas de Neoplasias/genética
4.
Commun Biol ; 5(1): 1203, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352089

RESUMO

Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility.


Assuntos
Extrofia Vesical , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Extrofia Vesical/genética , Extrofia Vesical/complicações , Estudo de Associação Genômica Ampla , Neoplasias da Bexiga Urinária/genética , Transcriptoma , Efrina-A1/genética
5.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35999193

RESUMO

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Assuntos
Quilotórax , Hamartoma , Hipofosfatemia , Nevo Pigmentado , Nevo , Raquitismo Hipofosfatêmico , Neoplasias Cutâneas , DNA , GTP Fosfo-Hidrolases/genética , Humanos , Hipofosfatemia/diagnóstico , Hipofosfatemia/genética , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Nevo Pigmentado/diagnóstico , Nevo Pigmentado/genética , Nevo Pigmentado/metabolismo , Fosfatos , Fosfatidilinositol 3-Quinases , Raquitismo Hipofosfatêmico/genética , Neoplasias Cutâneas/genética , Síndrome
6.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
7.
Genet Med ; 24(1): 29-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906452

RESUMO

PURPOSE: This study aimed to unravel the genetic factors underlying missing heritability in spinocerebellar ataxia type 17 (SCA17) caused by polyglutamine-encoding CAG/CAA repeat expansions in the TBP gene. Alleles with >49 CAG/CAA repeats are fully penetrant. Most patients, however, carry intermediate TBP41-49 alleles that show incomplete penetrance. METHODS: Using next-generation sequencing approaches, we investigated 40 SCA17/TBP41-54 index patients, their affected (n = 55) and unaffected (n = 51) relatives, and a cohort of patients with ataxia (n = 292). RESULTS: All except 1 (30/31) of the index cases with TBP41-46 alleles carried a heterozygous pathogenic variant in the STUB1 gene associated with spinocerebellar ataxias SCAR16 (autosomal recessive) and SCA48 (autosomal dominant). No STUB1 variant was found in patients carrying TBP47-54 alleles. TBP41-46 expansions and STUB1 variants cosegregate in all affected family members, whereas the presence of either TBP41-46 expansions or STUB1 variants individually was never associated with the disease. CONCLUSION: Our data reveal an unexpected genetic interaction between STUB1 and TBP in the pathogenesis of SCA17 and raise questions on the existence of SCA48 as a monogenic disease with crucial implications for diagnosis and counseling. They provide a convincing explanation for the incomplete penetrance of intermediate TBP alleles and demonstrate a dual inheritance pattern for SCA17, which is a monogenic dominant disorder for TBP≥47 alleles and a digenic TBP/STUB1 disease (SCA17-DI) for intermediate expansions.


Assuntos
Peptídeos , Ataxias Espinocerebelares , Proteína de Ligação a TATA-Box , Ubiquitina-Proteína Ligases , Humanos , Penetrância , Peptídeos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Proteína de Ligação a TATA-Box/genética , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética
8.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961779

RESUMO

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Rim Fundido/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/etiologia , Criança , Pré-Escolar , Epilepsia/complicações , Evolução Molecular , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Fenótipo , Estabilidade Proteica , Síndrome , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Adulto Jovem , Peixe-Zebra/genética
11.
Genes (Basel) ; 13(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052347

RESUMO

The RAF1:p.Ser257Leu variant is associated with severe Noonan syndrome (NS), progressive hypertrophic cardiomyopathy (HCM), and pulmonary hypertension. Trametinib, a MEK-inhibitor approved for treatment of RAS/MAPK-mutated cancers, is an emerging treatment option for HCM in NS. We report a patient with NS and HCM, treated with Trametinib and documented by global RNA sequencing before and during treatment to define transcriptional effects of MEK-inhibition. A preterm infant with HCM carrying the RAF1:p.Ser257Leu variant, rapidly developed severe congestive heart failure (CHF) unresponsive to standard treatments. Trametinib was introduced (0.022 mg/kg/day) with prompt clinical improvement and subsequent amelioration of HCM at ultrasound. The appearance of pulmonary artery aneurysm and pulmonary hypertension contributed to a rapid worsening after ventriculoperitoneal shunt device placement for posthemorrhagic hydrocephalus: she deceased for untreatable CHF at 3 months of age. Autopsy showed severe obstructive HCM, pulmonary artery dilation, disarrayed pulmonary vascular anatomy consistent with pulmonary capillary hemangiomatosis. Transcriptome across treatment, highlighted robust transcriptional changes induced by MEK-inhibition. Our findings highlight a previously unappreciated connection between pulmonary vascular disease and the severe outcome already reported in patients with RAF1-associated NS. While MEK-inhibition appears a promising therapeutic option for HCM in RASopathies, it appears insufficient to revert pulmonary hypertension.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , MAP Quinase Quinase Quinases/antagonistas & inibidores , Síndrome de Noonan/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/genética , Evolução Fatal , Feminino , Humanos , Recém-Nascido , Sequenciamento do Exoma
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076433

RESUMO

Diseases associated with acquired or genetic defects in members of the chaperoning system (CS) are increasingly found and have been collectively termed chaperonopathies. Illustrative instances of genetic chaperonopathies involve the genes for chaperonins of Groups I (e.g., Heat shock protein 60, Hsp60) and II (e.g., Chaperonin Containing T-Complex polypeptide 1, CCT). Examples of the former are hypomyelinating leukodystrophy 4 (HLD4 or MitCHAP60) and hereditary spastic paraplegia (SPG13). A distal sensory mutilating neuropathy has been linked to a mutation [p.(His147Arg)] in subunit 5 of the CCT5 gene. Here, we describe a new possibly pathogenic variant [p.(Leu224Val)] of the same subunit but with a different phenotype. This yet undescribed disease affects a girl with early onset demyelinating neuropathy and a severe motor disability. By whole exome sequencing (WES), we identified a homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene. In silico 3D-structure analysis and bioinformatics indicated that this variant could undergo abnormal conformation and could be pathogenic. We compared the patient's clinical, neurophysiological and laboratory data with those from patients carrying p.(His147Arg) in the equatorial domain. Our patient presented signs and symptoms absent in the p.(His147Arg) cases. Molecular dynamics simulation and modelling showed that the Leu224Val mutation that occurs in the CCT5 intermediate domain near the apical domain induces a conformational change in the latter. Noteworthy is the striking difference between the phenotypes putatively linked to mutations in the same CCT subunit but located in different structural domains, offering a unique opportunity for elucidating their distinctive roles in health and disease.


Assuntos
Chaperonina com TCP-1/genética , Neuropatia Hereditária Motora e Sensorial/genética , Mutação de Sentido Incorreto , Idade de Início , Chaperonina com TCP-1/química , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Recém-Nascido , Simulação de Dinâmica Molecular , Bainha de Mielina/metabolismo , Fenótipo
13.
Ital J Pediatr ; 46(1): 140, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972427

RESUMO

BACKGROUND: Mitochondrial diseases, also known as oxidative phosphorylation (OXPHOS) disorders, with a prevalence rate of 1:5000, are the most frequent inherited metabolic diseases. Leigh Syndrome French Canadian type (LSFC), is caused by mutations in the nuclear gene (2p16) leucine-rich pentatricopeptide repeat-containing (LRPPRC). It is an autosomal recessive neurogenetic OXPHOS disorder, phenotypically distinct from other types of Leigh syndrome, with a carrier frequency up to 1:23 and an incidence of 1:2063 in the Saguenay-Lac-St Jean region of Quebec. Recently, LSFC has also been reported outside the French-Canadian population. PATIENT PRESENTATION: We report a male Italian (Sicilian) child, born preterm at 28 + 6/7 weeks gestation, carrying a novel LRPPRC compound heterozygous mutation, with facial dysmorphisms, neonatal hypotonia, non-epileptic paroxysmal motor phenomena, and absent sucking-swallowing-breathing coordination requiring, at 4.5 months, a percutaneous endoscopic gastrostomy tube placement. At 5 months brain Magnetic Resonance Imaging showed diffuse cortical atrophy, hypoplasia of corpus callosum, cerebellar vermis hypoplasia, and unfolded hippocampi. Both auditory and visual evoked potentials were pathological. In the following months Video EEG confirmed the persistence of sporadic non epileptic motor phenomena. No episode of metabolic decompensation, acidosis or ketosis, frequently observed in LSFC has been reported. Actually, aged 14 months corrected age for prematurity, the child shows a severe global developmental delay. Metabolic investigations and array Comparative Genomic Hybridization (aCGH) results were normal. Whole-exome sequencing (WES) found a compound heterozygous mutation in the LRPPRC gene, c.1921-7A > G and c.2056A > G (p.Ile686Val), splicing-site and missense variants, inherited from the mother and the father, respectively. CONCLUSIONS: We first characterized the clinical and molecular features of a novel LRPPRC variant in a male Sicilian child with early onset encephalopathy and psychomotor impairment. Our patient showed a phenotype characterized by a severe neurodevelopmental delay and absence of metabolic decompensation attributable to a probable residual enzymatic activity. LRPPRC is a rare cause of metabolic encephalopathy outside of Québec. Our patient adds to and broaden the spectrum of LSFC phenotypes. WES analysis is a pivotal genetic test and should be performed in infants and children with hypotonia and developmental delay in whom metabolic investigations and aCGH are normal.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Doença de Leigh/genética , Proteínas de Neoplasias/genética , Hibridização Genômica Comparativa , Deficiência de Citocromo-c Oxidase/diagnóstico , Deficiência de Citocromo-c Oxidase/terapia , Diagnóstico Diferencial , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Itália , Doença de Leigh/diagnóstico , Doença de Leigh/terapia , Masculino , Mutação , Fenótipo
14.
Front Cell Dev Biol ; 8: 567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850778

RESUMO

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

15.
Methods Mol Biol ; 2152: 59-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524544

RESUMO

The application of next generation sequencing (NGS) technique has a great impact on complex disease studies. Indeed, genetic heterogeneity, phenotypic variability, and disease rarity are all factors that make the traditional diagnostic approach to genetic disorders, whereby a specific gene is selected for sequencing based on the clinical phenotype, very challenging and obsolete.Exome sequencing, which sequences the protein-coding region of the genome, has been rapidly applied to variant discovery in research settings. Recent coverage and accuracy improvements have accelerated the development of clinical exome sequencing (CES) platforms targeting disease-related genes and enabling variant identification in patients with suspected genetic diseases. Nowadays, CES is rapidly becoming the diagnostic test of choice in patients with suspected Mendelian diseases, especially for those with heterogeneous etiology and clinical presentation. Reporting large CES series can improve guidelines on best practices for test utilization, and a better variant interpretation through clinically oriented data sharing.Herein, we suggest a feasible CES procedure for the genetic testing of Cerebral Cavernous Malformation (CCM) disease, including proband identification, library preparation, data analysis, and variant interpretation.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Gerenciamento Clínico , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
16.
Br J Haematol ; 190(1): 93-104, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080838

RESUMO

Diamond-Blackfan anaemia (DBA) is a rare and heterogeneous disease characterised by hypoplastic anaemia, congenital anomalies and a predisposition for malignancies. The aim of this paper is to report the findings from the Italian DBA Registry, and to discuss the Registry's future challenges in tackling this disease. Our 20-year long work allowed the connection of 50 Italian Association of Paediatric Haematology and Oncology (AIEOP) centres and the recruitment of 283 cases. Almost all patients have been characterised at a molecular level (96%, 271/283), finding a causative mutation in 68% (184/271). We confirm the importance of determination of erythrocyte adenosine deaminase activity (eADA) and of ribosomal RNA assay in the diagnostic pipeline and characterisation of a remission state. Patients with mutations in large ribosomal subunit protein (RPL) genes had a significant correlation with the incidence of malformations, higher eADA levels and more severe outcomes, compared to patients with mutations in small ribosomal subunit protein (RPS) genes. Furthermore, as a consequence of our findings, particularly the incidence of malignancies and the high percentage of patients aged >18 years, we stress the importance of collaboration with adult clinicians to guarantee regular multi-specialist follow-up. In conclusion, this study highlights the importance of national registries to increase our understanding and improve management of this complex disease.


Assuntos
Anemia de Diamond-Blackfan/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Fatores de Tempo , Adulto Jovem
17.
J Hum Genet ; 64(11): 1083-1090, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31501477

RESUMO

Primary familial brain calcification (PFBC) is a rare disease characterized by brain calcifications that mainly affect the basal ganglia, thalamus, and cerebellum. Among the four autosomal-dominant genes known to be associated with the disease, SLC20A2 pathogenic variants are the most common, accounting for up to 40% of PFBC dominant cases; variants include both point mutations, small insertions/deletions and intragenic deletions. Over the last 7 years, we have collected a group of 50 clinically diagnosed PFBC patients, who were screened for single nucleotide changes and small insertions/deletions in SLC20A2 by Sanger sequencing. We found seven pathogenic/likely pathogenic variants: four were previously described by our group, and three are reported here (c.303delG, c.21delG, and c.1795-1G>A). We developed and validated a synthetic Multiplex Ligation-dependent Probe Amplification (MLPA) assay for SLC20A2 deletions, covering all ten coding exons and the 5' UTR (SLC20A2-MLPA). Using this method, we screened a group of 43 PFBC-patients negative for point mutations and small insertions/deletions, and identified two novel intragenic deletions encompassing exon 6 NC_000008.10:g.(42297172_42302163)_(423022281_42317413)del, and exons 7-11 including the 3'UTR NC_000008.10:g.(?_42275320)_(42297172_42302163)del. Overall, SLC20A2 deletions may be highly underestimated PFBC cases, and we suggest MLPA should be included in the routine molecular test for PFBC diagnosis.


Assuntos
Encefalopatias/genética , Calcinose/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adulto , Encéfalo/fisiopatologia , Encefalopatias/fisiopatologia , Calcinose/fisiopatologia , Éxons/genética , Humanos , Masculino , Linhagem , Mutação Puntual/genética , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética
18.
Hum Mutat ; 40(6): 721-728, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825388

RESUMO

The pathogenic variants in the neuroblastoma-amplified sequence (NBAS) are associated with a clinical spectrum involving the hepatic, skeletal, ocular, and immune systems. Here, we report on two unrelated subjects with a complex phenotype solved by whole-exome sequencing, who shared a synonymous change in NBAS that was documented to affect the transcript processing and co-occurring with a truncating change. Starting from these two cases, we systematically assessed the clinical information available for all subjects with biallelic NBAS pathogenic variants (73 cases in total). We revealed a recognizable facial profile (hypotelorism, thin lips, pointed chin, and "progeroid" appearance) determined by using DeepGestalt facial recognition technology, and we provide evidence for the occurrence of genotype-phenotype correlations. Notably, severe hepatic involvement was associated with variants affecting the NBAS-Nter and Sec39 domains, whereas milder liver involvement and immunodeficiency were generally associated with variants located at the N-terminus and C-terminus of the protein. Remarkably, no patient was reported to carry two nonsense variants, suggesting lethality of complete NBAS loss-of-function.


Assuntos
Anormalidades Múltiplas/genética , Sequenciamento do Exoma/métodos , Proteínas de Neoplasias/genética , Mutação Silenciosa , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Mutação com Perda de Função , Masculino , Proteínas de Neoplasias/química , Linhagem , Domínios Proteicos
19.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30683687

RESUMO

Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.


Assuntos
Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Animais , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Metaloendopeptidases/metabolismo , Camundongos , Membranas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transfecção
20.
Eur J Med Genet ; 62(11): 103578, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30445150

RESUMO

Microphthalmia with limb anomalies (MLA, OMIM, 206920) is a rare autosomal-recessive disease caused by biallelic pathogenic variants in the SMOC1 gene. It is characterized by ocular disorders (microphtalmia or anophtalmia) and limb anomalies (oligodactyly, syndactyly, and synostosis of the 4th and 5th metacarpals), variably associated with long bone hypoplasia, horseshoe kidney, venous anomalies, vertebral anomalies, developmental delay, and intellectual disability. Here, we report the case of a woman who interrupted her pregnancy after ultrasound scans revealed a depression of the frontal bone, posterior fossa anomalies, cerebral ventricular enlargement, cleft spine involving the sacral and lower-lumbar vertebrae, and bilateral microphthalmia. Micrognathia, four fingers in both feet and a slight tibial bowing were added to the clinical picture after fetal autopsy. Exome sequencing identified two variants in the SMOC1 gene, each inherited from one of the parents: c.709G>T - p.(Glu237*) on exon 8 and c.1223G>A - p.(Cys408Tyr) on exon 11, both predicted to be pathogenic by different bioinformatics software. Brain histopathology showed an abnormal cortical neuronal migration, which could be related to the SMOC1 protein function, given its role in cellular signaling, proliferation and migration. Finally, we summarize phenotypic and genetic data of known MLA cases showing that our case has some unique features (Chiari II malformation; focal neuropathological alterations) that could be part of the variable phenotype of SMOC1-associated diseases.


Assuntos
Micrognatismo/genética , Microftalmia/genética , Neurônios/patologia , Osteonectina/genética , Adulto , Alelos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Movimento Celular/genética , Criança , Consanguinidade , Éxons/genética , Feminino , Feto , Homozigoto , Humanos , Lactente , Deformidades Congênitas dos Membros , Masculino , Micrognatismo/diagnóstico , Micrognatismo/diagnóstico por imagem , Micrognatismo/fisiopatologia , Microftalmia/diagnóstico por imagem , Microftalmia/fisiopatologia , Mutação , Linhagem , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA