Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Med Chem ; 67(18): 16157-16164, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39231957

RESUMO

Photodynamic therapy delivers more targeted cell killing than classical chemotherapy. It uses light-absorbing compounds, photosensitizers (PSs), to generate lethal reactive oxygen species (ROS) at sites of localized irradiation. Transition metal complexes are attractive PSs due to their photostability, visible-light absorption, and high ROS yields. Here, we introduce a low-molecular weight, photostable iridium complex, [Ir(thpy)2(benz)]Cl, 1, that localizes to the Golgi apparatus, mitochondria, and endoplasmic reticulum, absorbs visible light, phosphoresces strongly, generates 1O2 with 43% yield, and undergoes cellular elimination after 24 h. 1 shows low dark toxicity and under remarkably low doses (3 min, 20-30 mJ s-1 cm-2) of 405 or 455 nm light, it causes killing of bladder (EJ), malignant melanoma (A375), and oropharyngeal (OPSCC72) cancer cells, with high phototoxic indices > 100-378. 1 is also an efficient PS in 3D melanoma spheroids, with repeated short-time irradiation causing cumulative killing.


Assuntos
Complexos de Coordenação , Irídio , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Irídio/química , Irídio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo
2.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702304

RESUMO

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Assuntos
Diferenciação Celular , Variações do Número de Cópias de DNA , Proteína Proto-Oncogênica N-Myc , Crista Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Feminino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Cell Death Dis ; 15(2): 150, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368415

RESUMO

Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation.


Assuntos
DNA Glicosilases , Neoplasias de Cabeça e Pescoço , Humanos , Prótons , Transferência Linear de Energia , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
4.
J Biol Inorg Chem ; 29(1): 113-125, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183420

RESUMO

Two novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as 3IL state. Singlet oxygen generation with good yields (40% for 1 and 82% for 2) was established by detecting 1O2 directly, through its emission at 1270 nm. Photostability studies were also performed to assess the viability of the complexes as photosensitizers (PS) for photodynamic therapy (PDT). Complex 1 was selected as a good candidate to investigate light-activated killing of cells, whilst complex 2 was found to be toxic in the dark and unstable under light. Complex 1 demonstrated high phototoxicity indexes (PI) in the visible region, PI > 250 after irradiation at 405 nm and PI > 150 at 455 nm, in EJ bladder cancer cells.


Assuntos
Benzimidazóis , Neoplasias , Fotoquimioterapia , Ligantes , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Morte Celular , Irídio/farmacologia , Irídio/química
6.
Front Bioeng Biotechnol ; 11: 1321197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260750

RESUMO

Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 µm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.

7.
PLoS One ; 17(5): e0268300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617163

RESUMO

Chemoresistance poses a great barrier to breast cancer treatment and is thought to correlate with increased matrix stiffness. We developed two-dimensional (2D) polyacrylamide (PAA) and three-dimensional (3D) alginate in vitro models of tissue stiffness that mimic the stiffness of normal breast and breast cancer. We then used these to compare cell viability in response to chemotherapeutic treatment. In both 2D and 3D we observed that breast cancer cell growth and size was increased at a higher stiffness corresponding to tumours compared to normal tissue. When chemotherapeutic response was measured, a specific differential response in cell viability was observed for gemcitabine in 2 of the 7 breast cancer cell lines investigated. MCF7 and T-47D cell lines showed gemcitabine resistance at 4 kPa compared to 500 Pa. These cell lines share a common phenotype of progesterone receptor (PGR) expression and, indeed, pre-treatment with the selective progesterone receptor modulator (SPRM) mifepristone abolished resistance to gemcitabine at high stiffness. Our data reveals that combined treatment with SPRMs may therefore help in reducing resistance to gemcitabine in stiffer breast tumours which are PGR positive.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Feminino , Humanos , Progesterona/uso terapêutico , Receptores de Progesterona/metabolismo , Gencitabina
8.
Cancers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944835

RESUMO

Despite intensive high-dose multimodal therapy, high-risk neuroblastoma (NB) confers a less than 50% survival rate. This study investigates the role of replication stress in sensitivity to inhibition of Ataxia telangiectasia and Rad3-related (ATR) in pre-clinical models of high-risk NB. Amplification of the oncogene MYCN always imparts high-risk disease and occurs in 25% of all NB. Here, we show that MYCN-induced replication stress directly increases sensitivity to the ATR inhibitors VE-821 and AZD6738. PARP inhibition with Olaparib also results in replication stress and ATR activation, and sensitises NB cells to ATR inhibition independently of MYCN status, with synergistic levels of cell death seen in MYCN expressing ATR- and PARP-inhibited cells. Mechanistically, we demonstrate that ATR inhibition increases the number of persistent stalled and collapsed replication forks, exacerbating replication stress. It also abrogates S and G2 cell cycle checkpoints leading to death during mitosis in cells treated with an ATR inhibitor combined with PARP inhibition. In summary, increased replication stress through high MYCN expression, PARP inhibition or chemotherapeutic agents results in sensitivity to ATR inhibition. Our findings provide a mechanistic rationale for the inclusion of ATR and PARP inhibitors as a potential treatment strategy for high-risk NB.

9.
Front Mol Biosci ; 8: 784962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869604

RESUMO

Photodynamic therapy (PDT) is a treatment which uses light-activated compounds to produce reactive oxygen species, leading to membrane damage and cell death. Multicellular cancer spheroids are a preferable alternative for PDT evaluation in comparison to monolayer cell cultures due to their ability to better mimic in vivo avascular tumour characteristics such as hypoxia and cell-cell interactions, low cost, and ease of production. However, inconsistent growth kinetics and drug responsiveness causes poor experimental reproducibility and limits their usefulness. Herein, we used image analysis to establish a link between human melanoma C8161 spheroid morphology and drug responsiveness. Spheroids were pre-selected based on sphericity, area, and diameter, reducing variation in experimental groups before treatment. Spheroid morphology after PDT was analyzed using AnaSP and ReViSP, MATLAB-based open-source software, obtaining nine different parameters. Spheroids displayed a linear response between biological assays and morphology, with area (R2 = 0.7219) and volume (R2 = 0.6138) showing the best fit. Sphericity, convexity, and solidity were confirmed as poor standalone indicators of spheroid viability. Our results indicate spheroid morphometric parameters can be used to accurately screen inefficient treatment combinations of novel compounds.

10.
ACS Biomater Sci Eng ; 7(11): 5078-5089, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34615346

RESUMO

The evaluation of novel photosensitizers (PSs) for photodynamic therapy (PDT) is difficult due to the limitations of two-dimensional cell culture and multiple parameters (dose, light intensity, uptake time), which complicate progression to in vivo experiments and clinical translation. Three-dimensional (3D) cell culture models like multicellular cancer tumor spheroids (MCTS) show great similarities to in vivo avascular tumor conditions, improving the speed and accuracy of screening novel compounds with various treatment combinations. In this study, we utilize C8161 human melanoma spheroids to screen PDT treatment combinations using protoporphyrin IX (PpIX) and drug-loaded carbon dot (CD) conjugates PpIX-CD and PpIX@CD at ultralow fluence values (<10 J/cm2). Conjugates show equivalent light-induced damage to PpIX from 1 µg/mL with significantly less dark cytotoxicity up to 72 h after exposure, shown by LDH release and dsDNA content. Fractionated treatments, carried out by dividing light exposure with 24 h intervals, demonstrate an enhanced PDT effect compared to single exposure at equal concentrations. Light sheet fluorescence microscopy combined with live/dead staining demonstrates that spheroids sustain extensive damage after PDT, with PpIX and PpIX-CD showing improved uptake compared to PpIX@CD. We show that PDT parameter screening can be carried out using a low-cost and convenient combination of assays to improve the efficiency of evaluating novel compounds.


Assuntos
Dermatite Fototóxica , Melanoma , Fotoquimioterapia , Ácido Aminolevulínico , Humanos , Melanoma/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia
11.
Front Mol Biosci ; 7: 191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005627

RESUMO

Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.

12.
EBioMedicine ; 59: 102971, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32846370

RESUMO

BACKGROUND: In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. METHODS: To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. FINDINGS: In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. INTERPRETATION: ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. FUNDING: This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neuroblastoma/genética , Proteína Nuclear Ligada ao X/genética , Animais , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Edição de Genes , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 11(23): 2141-2159, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577161

RESUMO

This study investigates the influence expression of the MYCN oncogene has on the DNA damage response, replication fork progression and sensitivity to PARP inhibition in neuroblastoma. In a panel of neuroblastoma cell lines, MYCN amplification or MYCN expression resulted in increased cell death in response to a range of PARP inhibitors (niraparib, veliparib, talazoparib and olaparib) compared to the response seen in non-expressing/amplified cells. MYCN expression slowed replication fork speed and increased replication fork stalling, an effect that was amplified by PARP inhibition or PARP1 depletion. Increased DNA damage seen was specifically induced in S-phase cells. Importantly, PARP inhibition caused a significant increase in the survival of mice bearing MYCN expressing tumours in a transgenic murine model of MYCN expressing neuroblastoma. Olaparib also sensitized MYCN expressing cells to camptothecin- and temozolomide-induced cell death to a greater degree than non-expressing cells. In summary, MYCN expression leads to increased replication stress in neuroblastoma cells. This effect is exaggerated by inhibition of PARP, resulting in S-phase specific DNA damage and ultimately increased tumour cell death. PARP inhibition alone or in combination with classical chemotherapeutics is therefore a potential therapeutic strategy for neuroblastoma and may be more effective in MYCN expressing tumours.

14.
Oncotarget ; 11(13): 1109-1130, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32284789

RESUMO

pVHL is a tumor suppressor. The lack of its function leads to various tumors, among which ccRCC (clear cell renal cell carcinoma) has the most serious outcome due to its resistance to chemotherapies and radiotherapies. Although HIF promotes the progression of ccRCC, the precise mechanism by which the loss of VHL leads to tumor initiation remains unclear. We exploited two zebrafish vhl mutants, vhl and vll, and Tg (phd3:: EGFP)i144 fish to identify crucial functions of Vhl in tumor initiation. Through the mutant analysis, we found that the role of pVHL in DNA repair is conserved in zebrafish Vll. Interestingly, we also discovered that Hif activation strongly suppressed genotoxic stress induced DNA repair defects and apoptosis in vll and brca2 mutants and in embryos lacking ATM activity. These results suggest the potential of HIF as a clinical modulator that can protect cells from accumulating DNA damage and apoptosis which can lead to cancers and neurodegenerative disorders.

15.
Cancers (Basel) ; 11(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480356

RESUMO

Uveal melanoma (UM) is the most common primary intraocular tumour in adults, with a mean survival of six months following metastasis. The survival rates have not improved in over 30 years. This study has shown that sister chromatid exchange (SCE) is low in UM which is likely due to a reduced expression of FANCD2. As FANCD2 can function to suppress non-homologous end joining (NHEJ), this study therefore investigated NHEJ in UM. The activation of the catalytic subunit of the NHEJ pathway protein DNA-dependent protein kinase (DNA-PK) was measured by analysing the foci formation and the ligation efficiency by NHEJ determined using a plasmid-based end-joining assay. Using small-interfering RNA (siRNA) knock-down, and chemical inhibitors of DNA-PK, the survival of primary UM cultures and two cell lines were determined. To assess the homologous recombination capacity in response to the inhibition of DNA-PK, a SCE analysis was performed. In addition, to support the findings, the messenger RNA (mRNA) expression of genes associated with NHEJ was analysed using the Cancer Genome Atlas (TCGA)-UM RNAseq data (n = 79). The NHEJ activity and DNA-PKcs activation was upregulated in UM and the inhibition of DNA-PK selectively induced apoptosis and sensitized to ionising radiation and inter-strand cross-linking agents. The inhibition of the NHEJ protein DNA-PK is lethal to UM, indicating a potentially effective therapeutic option, either alone or as a sensitizer for other treatments.

16.
PLoS One ; 14(7): e0220210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344086

RESUMO

Photodynamic therapy (PDT) uses photosensitisers such as protoporphyrin IX (PpIX) to target tumours via the release of toxic singlet oxygen when irradiated. The effectivity of the treatment is limited by the innate properties of the photosensitizers; they typically exhibit inefficient accumulation in target tissue and high dark toxicity. Carbon dots (CDs) are biocompatible fluorescent nanoparticles which can improve PpIX cellular uptake and solubility. In this work, we present conjugates synthesised by host-guest encapsulation (PpIX@CD) and amide cross-linking (PpIX-CD). Characterization demonstrated conjugates have a loading efficiency of 34-48% and similar singlet oxygen production to PpIX. PpIX-containing CDs showed a 2.2 to 3.7-fold decrease in dark toxicity. PpIX-CD and PpIX@CD showed equivalent light-induced toxicity to PpIX in concentrations >1 µg/ml, leading to a 3.2 to 4.1-fold increase in photo-toxicity index (PI). The less soluble fraction of cross-linked conjugates (PpIX-CD)p did not show significant difference from PpIX. Confocal light scanning microscopy demonstrated rapid intracellular uptake and accumulation of conjugates. Our results demonstrate the variations between cross-linking strategies in CD-based conjugates, highlighting their potential as carriers in drug delivery and bioimaging applications.


Assuntos
Carbono/química , Diagnóstico por Imagem/métodos , Portadores de Fármacos/síntese química , Técnicas de Sonda Molecular , Fotoquimioterapia/métodos , Protoporfirinas/química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Teste de Materiais , Nanoconjugados/química , Nanopartículas/química , Nanotubos de Carbono/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Testes de Toxicidade , Células Tumorais Cultivadas
17.
Oncogenesis ; 8(5): 29, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988276

RESUMO

Micronuclei represent the cellular attempt to compartmentalize DNA to maintain genomic integrity threatened by mitotic errors and genotoxic events. Some micronuclei show aberrant nuclear envelopes (NEs) that collapse, generating damaged DNA that can promote complex genome alterations. However, ruptured micronuclei also provide a pool of cytosolic DNA that can stimulate antitumor immunity, revealing the complexity of micronuclear impact on tumor progression. The ESCRT-III (Endosomal Sorting Complex Required for Transport-III) complex ensures NE reseals during late mitosis and is repaired in interphase. Therefore, ESCRT-III activity maybe crucial for maintaining the integrity of other genomic structures enclosed by a NE. ESCRT-III activity at the NE is coordinated by the subunit CHMP7. We show that CHMP7 and ESCRT-III protect against the genomic instability associated with micronuclei formation. Loss of ESCRT-III activity increases the population of micronuclei with ruptured NEs, revealing that its NE repair activity is also necessary to maintain micronuclei integrity. Surprisingly, aberrant accumulation of ESCRT-III are found at the envelope of most acentric collapsed micronuclei, suggesting that ESCRT-III is not recycled efficiently from these structures. Moreover, CHMP7 depletion relieves micronuclei from the aberrant accumulations of ESCRT-III. CHMP7-depleted cells display a reduction in micronuclei containing the DNA damage marker RPA and a sensor of cytosolic DNA. Thus, ESCRT-III activity appears to protect from the consequence of genomic instability in a dichotomous fashion: ESCRT-III membrane repair activity prevents the occurrence of micronuclei with weak envelopes, but the aberrant accumulation of ESCRT-III on a subset of micronuclei appears to exacerbate DNA damage and sustain proinflammatory pathways.

18.
Mol Pharm ; 16(3): 1132-1139, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30694688

RESUMO

Macromolecules are potentially useful delivery systems for cancer drugs, as their size allows them to utilize the enhanced permeability and retention effect (EPR), which facilitates selective delivery to (and retention within) tumors. In addition, macromolecular delivery systems can prolong circulation times as well as protect and solubilize toxic and hydrophobic drug moieties. Overall, these properties and abilities can result in an enhanced therapeutic effect. Photodynamic therapy (PDT) combines the use of oxygen and a photosensitizer (PS), which become toxic upon light irradiation. We proposed that a PS encapsulated within a water-soluble macromolecule could exploit the EPR effect and safely and selectively deliver the PS to a tumor. In this paper, we describe the synthesis of a porphyrin-cored hyperbranched polymer that aggregated into larger micellar structures. DLS and TEM indicated that these aggregated structures had diameters of 45 and 20 nm for the solvated and nonsolvated species, respectively. The porphyrin-cored HBP (PC-HBP), along with the nonencapsulated porphyrin (THPP), were screened against EJ bladder carcinoma cells in the dark and light. Both THPP and PC-HBP displayed good toxicity in the light, with LD50 concentrations of 0.5 and 1.7 µM, respectively. However, in the dark, the nonincorporated porphyrin (THPP) displayed significant toxicity, generating an LD50 of 4 µM. On the other hand, no dark toxicity was observed for the polymer system (PC-HBP) at concentrations of 100 µM or less. As such, incorporation within the large polymer aggregate serves to eliminate dark toxicity while maintaining excellent toxicity when irradiated.


Assuntos
Micelas , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Propilenoglicóis/química , Neoplasias da Bexiga Urinária/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escuridão , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Confocal , Nanosferas , Tamanho da Partícula , Polímeros/uso terapêutico , Neoplasias da Bexiga Urinária/patologia
19.
Inorg Chem ; 57(21): 13201-13212, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351084

RESUMO

The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.


Assuntos
Complexos de Coordenação/química , Substâncias Luminescentes/química , Imagem Óptica , Osmio/química , Piridinas/química , Triazóis/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Células HeLa , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/farmacologia , Medições Luminescentes , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica , Células Tumorais Cultivadas
20.
DNA Repair (Amst) ; 61: 25-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179156

RESUMO

Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.


Assuntos
Antineoplásicos/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico , Mitose/genética , Fenótipo , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA