Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Neuron ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38897209

RESUMO

Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.

3.
Mol Neurodegener ; 18(1): 46, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434208

RESUMO

Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.


Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Demência Vascular , Humanos , Causalidade , Fatores de Risco , Doenças de Pequenos Vasos Cerebrais/complicações
4.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975090

RESUMO

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Inflamação , Apolipoproteínas E/genética
5.
J Exp Med ; 219(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36107206

RESUMO

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Amiloide/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Mol Neurodegener ; 17(1): 57, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056345

RESUMO

BACKGROUND: The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS: We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS: We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS: We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Camundongos , Doença de Parkinson/metabolismo , Sinapsinas , Proteínas tau/metabolismo
7.
Nat Med ; 28(7): 1398-1405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618838

RESUMO

Plasma phosphorylated tau 181 (P-tau181) and 217 (P-tau217) are indicators of both amyloid and tau pathology in clinical settings, but their performance in heterogeneous community-based populations is unclear. We examined P-tau181 and P-tau217 (n = 1,329, aged 30-98 years), in the population-based Mayo Clinic Study of Aging. Continuous, unadjusted plasma P-tau181 and P-tau217 predicted abnormal amyloid positron-emission tomography (PET) (area under the receiver operating characteristic curve (AUROC) = 0.81-0.86) and tau PET entorhinal cortex (AUROC > 0.80), but was less predictive of a tau PET temporal region of interest (AUROC < 0.70). Multiple comorbidities were associated with higher plasma P-tau181 and P-tau217 levels; the difference between participants with and without chronic kidney disease (CKD) was similar to the difference between participants with and without elevated brain amyloid. The exclusion of participants with CKD and other comorbidities affected the establishment of a normal reference range and cutpoints. Understanding the effect of comorbidities on P-tau181 and P-tau217 levels is important for their future interpretation in the context of clinical screening, diagnosis or prognosis at the population level.


Assuntos
Doença de Alzheimer , Amiloidose , Insuficiência Renal Crônica , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tau
8.
Neurobiol Aging ; 115: 20-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453035

RESUMO

APOE4 is the first identified genetic risk factor and remains as the strongest predictor for late-onset Alzheimer's disease (AD). Studies of AD patients, AD patient-specific induced pluripotent stem cell-derived neurons and cerebral organoids, and human apoE4-expressing and apoE-deficient mouse models clearly demonstrate that apoE4 provokes neuroinflammation, impairs cerebrovasculature, and exacerbates amyloid and tau pathologies. ApoE expression is greatly up-regulated in disease-associated microglia in mouse models of amyloidosis and in human microglia from AD brains. Importantly, genetic knock-down or depletion of apoE in mice greatly attenuates neuroinflammation and alleviates amyloid and tau pathologies. Similar beneficial effects can be achieved when apoE reduction is induced by the overexpression of apoE metabolic receptor LDLR. Toward therapeutic implications, administration of apoE antisense oligonucleotides or apoE siRNAs leads to significant pharmacologic effects, i.e., significant alleviation of AD pathologies in mouse models. Therefore, apoE reduction represents a promising therapeutic strategy for the treatment of AD patients carrying the APOE ε4 allele. In this review, we summarize evidence and rationale on why and how we target apoE4 reduction for AD therapy.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
9.
Neurology ; 98(20): e2036-e2045, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35314499

RESUMO

BACKGROUND AND OBJECTIVES: To identify clinicopathologic factors contributing to mild cognitive impairment (MCI) reversion to normal cognition. METHODS: We analyzed 3 longitudinal cohorts in this study: the Mayo Clinic Study of Aging (MCSA), the Religious Orders Study and Memory and Aging Project (ROSMAP), and the National Alzheimer's Coordinating Center (NACC). Demographic characteristics and clinical outcomes were compared between patients with MCI with or without an experience of reversion to normal cognition (referred to as reverters and nonreverters, respectively). We also compared longitudinal changes in cortical thickness, glucose metabolism, and amyloid and tau load in a subcohort of reverters and nonreverters in MCSA with MRI or PET imaging information from multiple visits. RESULTS: We identified 164 (56.4%) individuals in MCSA, 508 (66.8%) individuals in ROSMAP, and 280 (34.1%) individuals in NACC who experienced MCI reversion to normal cognition. Cox proportional hazards regression models showed that MCI reverters had an increased chance of being cognitively normal at the last visit in MCSA (HR 3.31, 95% CI 2.14-5.12), ROSMAP (HR 3.72, 95% CI 2.50-5.56), and NACC (HR 9.29, 95% CI 6.45-13.40) and a reduced risk of progression to dementia (HR 0.12, 95% CI 0.05-0.29 in MCSA; HR 0.41, 95% CI 0.32-0.53 in ROSMAP; and HR 0.29, 95% CI 0.21-0.40 in NACC). Compared with MCI nonreverters, reverters had better-preserved cortical thickness (ß = 0.082, p <0.001) and glucose metabolism (ß = 0.119, p = 0.001) and lower levels of amyloid, albeit statistically nonsignificant (ß = -0.172, p = 0.090). However, no difference in tau load was found between reverters and nonreverters (ß = 0.073, p = 0.24). DISCUSSION: MCI reversion to normal cognition is likely attributed to better-preserved cortical structure and glucose metabolism.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Envelhecimento , Doença de Alzheimer/patologia , Amiloide , Cognição , Disfunção Cognitiva/psicologia , Progressão da Doença , Glucose , Humanos , Testes Neuropsicológicos
10.
Alzheimers Dement ; 18(6): 1128-1140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569696

RESUMO

INTRODUCTION: Blood-based biomarkers of amyloid pathology and neurodegeneration are entering clinical use. It is critical to understand what factors affect the levels of these markers. METHODS: Plasma markers (Aß42, Aß40, NfL, T-tau, Aß42/40 ratio) were measured on the Quanterix Simoa HD-1 analyzer for 996 Mayo Clinic Study of Aging (MCSA) participants, aged 51 to 95 years. All other data were collected during in-person MCSA visits or abstracted from the medical record. RESULTS: Among cognitively unimpaired (CU) participants, all plasma markers correlated with age. Linear regression models revealed multiple relationships. For example, higher Charlson Comorbidity Index and chronic kidney disease were associated with higher levels of all biomarkers. Some relationships differed between mild cognitive impairment and dementia participants. DISCUSSION: Multiple variables affect plasma biomarkers of amyloid pathology and neurodegeneration among CU in the general population. Incorporating this information is critical for accurate interpretation of the biomarker levels and for the development of reference ranges.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Comorbidade , Humanos , Proteínas tau
11.
J Neuroinflammation ; 18(1): 286, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893068

RESUMO

BACKGROUND: TREM2 is a microglial receptor genetically linked to the risk for Alzheimer's disease (AD). The cerebrospinal fluid (CSF) levels of soluble TREM2 (sTREM2) have emerged as a valuable biomarker for the disease progression in AD and higher CSF levels of sTREM2 are linked to slower cognitive decline. Increasing sTREM2 in mouse models of amyloidosis reduces amyloid-related pathology through modulating microglial functions, suggesting a beneficial role of sTREM2 in microglia biology and AD pathology. METHODS: In the current study, we performed serial C- and N-terminal truncations of sTREM2 protein to define the minimal sequence requirement for sTREM2 function. We initially assessed the impacts of sTREM2 mutants on microglial functions by measuring cell viability and inflammatory responses. The binding of the sTREM2 mutants to oligomeric Aß was determined by solid-phase protein binding assay and dot blot assay. We further evaluated the impacts of sTREM2 mutants on amyloid-related pathology by direct stereotaxic injection of sTREM2 proteins into the brain of 5xFAD mice. RESULTS: We found that both sTREM2 fragments 41-81 and 51-81 enhance cell viability and inflammatory responses in primary microglia. However, the fragment 51-81 exhibited impaired affinity to oligomeric Aß. When administrated to the 5xFAD mice brain, the sTREM2 fragment 41-81, but not 51-81, increased the number of plaque-associated microglia and reduced the plaque deposition. Interestingly, the fragment 41-81 was more efficient than the physiological form of sTREM2 in ameliorating Aß-related pathology. CONCLUSIONS: Our results indicate that the interaction of sTREM2 truncated variants with Aß is essential for enhancing microglial recruitment to the vicinity of an amyloid plaque and reducing the plaque load. Importantly, we identified a 41-amino acid sequence of sTREM2 that is sufficient for modulating microglial functions and more potent than the full-length sTREM2 in reducing the plaque load and the plaque-associated neurotoxicity. Taken together, our data provide more insights into the mechanisms underlying sTREM2 function and the minimal active sTREM2 sequence represents a promising candidate for AD therapy.


Assuntos
Amiloidose/genética , Amiloidose/patologia , Encéfalo/patologia , Glicoproteínas de Membrana/genética , Microglia/patologia , Fenótipo , Receptores Imunológicos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos
12.
Mol Neurodegener ; 15(1): 71, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246484

RESUMO

BACKGROUND: Accumulation of amyloid-ß (Aß) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the common non-coding, protective CLU variants associated with increased expression. Although there is strong evidence implicating CLU in amyloid metabolism, the exact mechanism underlying the CLU involvement in AD is not fully understood or whether physiologic alterations of CLU levels in the brain would be protective. RESULTS: We used a gene delivery approach to overexpress CLU in astrocytes, the major source of CLU expression in the brain. We found that CLU overexpression resulted in a significant reduction of total and fibrillar amyloid in both cortex and hippocampus in the APP/PS1 mouse model of AD amyloidosis. CLU overexpression also ameliorated amyloid-associated neurotoxicity and gliosis. To complement these overexpression studies, we also analyzed the effects of haploinsufficiency of Clu using heterozygous (Clu+/-) mice and control littermates in the APP/PS1 model. CLU reduction led to a substantial increase in the amyloid plaque load in both cortex and hippocampus in APP/PS1; Clu+/- mice compared to wild-type (APP/PS1; Clu+/+) littermate controls, with a concomitant increase in neuritic dystrophy and gliosis. CONCLUSIONS: Thus, both physiologic ~ 30% overexpression or ~ 50% reduction in CLU have substantial impacts on amyloid load and associated pathologies. Our results demonstrate that CLU plays a major role in Aß accumulation in the brain and suggest that efforts aimed at CLU upregulation via pharmacological or gene delivery approaches offer a promising therapeutic strategy to regulate amyloid pathology.


Assuntos
Amiloidose/metabolismo , Astrócitos/metabolismo , Clusterina/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/patologia
13.
Stem Cells Transl Med ; 9(9): 1007-1022, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472653

RESUMO

Severe cases of COVID-19 infection, often leading to death, have been associated with variants of acute respiratory distress syndrome (ARDS). Cell therapy with mesenchymal stromal cells (MSCs) is a potential treatment for COVID-19 ARDS based on preclinical and clinical studies supporting the concept that MSCs modulate the inflammatory and remodeling processes and restore alveolo-capillary barriers. The authors performed a systematic literature review and random-effects meta-analysis to determine the potential value of MSC therapy for treating COVID-19-infected patients with ARDS. Publications in all languages from 1990 to March 31, 2020 were reviewed, yielding 2691 studies, of which nine were included. MSCs were intravenously or intratracheally administered in 117 participants, who were followed for 14 days to 5 years. All MSCs were allogeneic from bone marrow, umbilical cord, menstrual blood, adipose tissue, or unreported sources. Combined mortality showed a favorable trend but did not reach statistical significance. No related serious adverse events were reported and mild adverse events resolved spontaneously. A trend was found of improved radiographic findings, pulmonary function (lung compliance, tidal volumes, PaO2 /FiO2 ratio, alveolo-capillary injury), and inflammatory biomarker levels. No comparisons were made between MSCs of different sources.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/terapia , Síndrome do Desconforto Respiratório/terapia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Pulmão/fisiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2
14.
Sci Transl Med ; 12(529)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024798

RESUMO

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease mainly by driving amyloid-ß pathology. Recently, APOE4 has also been found to be a genetic risk factor for Lewy body dementia (LBD), which includes dementia with Lewy bodies and Parkinson's disease dementia. How APOE4 drives risk of LBD and whether it has a direct effect on α-synuclein pathology are not clear. Here, we generated a mouse model of synucleinopathy using an adeno-associated virus gene delivery of α-synuclein in human APOE-targeted replacement mice expressing APOE2, APOE3, or APOE4. We found that APOE4, but not APOE2 or APOE3, increased α-synuclein pathology, impaired behavioral performances, worsened neuronal and synaptic loss, and increased astrogliosis at 9 months of age. Transcriptomic profiling in APOE4-expressing α-synuclein mice highlighted altered lipid and energy metabolism and synapse-related pathways. We also observed an effect of APOE4 on α-synuclein pathology in human postmortem brains with LBD and minimal amyloid pathology. Our data demonstrate a pathogenic role of APOE4 in exacerbating α-synuclein pathology independent of amyloid, providing mechanistic insights into how APOE4 increases the risk of LBD.


Assuntos
Apolipoproteína E4 , Doença por Corpos de Lewy/genética , Sinucleinopatias , alfa-Sinucleína , Peptídeos beta-Amiloides , Animais , Apolipoproteína E4/genética , Camundongos , Camundongos Knockout para ApoE , Sinucleinopatias/genética
15.
Exp Mol Med ; 51(7): 1-11, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337748

RESUMO

Focal cortical dysplasia type II (FCDII) is a cerebral cortex malformation characterized by local cortical structure disorganization, neuronal dysmorphology, and refractory epilepsy. Brain somatic mutations in several genes involved in the PI3K/AKT/mTOR pathway are associated with FCDII, but they are only found in a proportion of patients with FCDII. The genetic causes underlying the development FCDII in other patients remain unclear. Here, we carried out whole exome sequencing and targeted sequencing in paired brain-blood DNA from patients with FCDII and identified a brain somatic doublet mutation c.(A104T, C105A) in the Ras homolog, mTORC1 binding (RHEB) gene, which led to the RHEB p.Y35L mutation in one patient with FCDII. This RHEB mutation carrier had a dramatic increase of ribosomal protein S6 phosphorylation, indicating mTOR activation in the region of the brain lesion. The RHEB p.Y35L mutant protein had increased GTPλS-binding activity compared with wild-type RHEB. Overexpression of the RHEB p.Y35L variant in cultured cells also resulted in elevated S6 phosphorylation compared to wild-type RHEB. Importantly, in utero electroporation of the RHEB p.Y35L variant in mice induced S6 phosphorylation, cytomegalic neurons, dysregulated neuron migration, abnormal electroencephalogram, and seizures, all of which are found in patients with FCDII. Rapamycin treatment rescued abnormal electroencephalograms and alleviated seizures in these mice. These results demonstrate that brain somatic mutations in RHEB are also responsible for the pathogenesis of FCDII, indicating that aberrant activation of mTOR signaling is a primary driver and potential drug target for FCDII.


Assuntos
Epilepsia/genética , Malformações do Desenvolvimento Cortical do Grupo I/genética , Fosfatidilinositol 3-Quinases/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico por imagem , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Alinhamento de Sequência , Serina-Treonina Quinases TOR/metabolismo , Sequenciamento do Exoma
16.
Nat Commun ; 10(1): 1365, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911003

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor genetically linked to the risk for Alzheimer's disease (AD). A proteolytic product, soluble TREM2 (sTREM2), is abundant in the cerebrospinal fluid and its levels positively correlate with neuronal injury markers. To gain insights into the pathological roles of sTREM2, we studied sTREM2 in the brain of 5xFAD mice, a model of AD, by direct stereotaxic injection of recombinant sTREM2 protein or by adeno-associated virus (AAV)-mediated expression. We found that sTREM2 reduces amyloid plaque load and rescues functional deficits of spatial memory and long-term potentiation. Importantly, sTREM2 enhances microglial proliferation, migration, clustering in the vicinity of amyloid plaques and the uptake and degradation of Aß. Depletion of microglia abolishes the neuroprotective effects of sTREM2. Our study demonstrates a protective role of sTREM2 against amyloid pathology and related toxicity and suggests that increasing sTREM2 can be explored for AD therapy.


Assuntos
Doença de Alzheimer/terapia , Potenciação de Longa Duração/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Microglia/efeitos dos fármacos , Placa Amiloide/terapia , Receptores Imunológicos/genética , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intraventriculares , Potenciação de Longa Duração/fisiologia , Masculino , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenótipo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Cultura Primária de Células , Proteólise , Receptores Imunológicos/administração & dosagem , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Memória Espacial/fisiologia , Técnicas Estereotáxicas
17.
Nat Commun ; 9(1): 4388, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348994

RESUMO

Apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease mainly by modulating amyloid-ß pathology. APOE ε4 is also shown to exacerbate neurodegeneration and neuroinflammation in a tau transgenic mouse model. To further evaluate the association of APOE genotype with the presence and severity of tau pathology, we express human tau via an adeno-associated virus gene delivery approach in human APOE targeted replacement mice. We find increased hyperphosphorylated tau species, tau aggregates, and behavioral abnormalities in mice expressing APOE ε2/ε2. We also show that in humans, the APOE ε2 allele is associated with increased tau pathology in the brains of progressive supranuclear palsy (PSP) cases. Finally, we identify an association between the APOE ε2/ε2 genotype and risk of tauopathies using two series of pathologically-confirmed cases of PSP and corticobasal degeneration. Our data together suggest APOE ε2 status may influence the risk and progression of tauopathy.


Assuntos
Apolipoproteína E2/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Alelos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Apolipoproteína E4/metabolismo , Progressão da Doença , Humanos , Camundongos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia
18.
Cell Death Dis ; 9(10): 951, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237421

RESUMO

Oxidative stress can cause apoptosis in neurons and may result in neurodegenerative diseases. However, the signaling mechanisms leading to oxidative stress-induced neuronal apoptosis are not fully understood. Oxidative stress stimulates aberrant activation of cyclin-dependent kinase 5 (CDK5), thought to promote neuronal apoptosis by phosphorylating many cell death-related substrates. Here, using protein pulldown methods, immunofluorescence experiments and in vitro kinase assays, we identified chloride intracellular channel 4 (CLIC4), the expression of which increases during neuronal apoptosis, as a CDK5 substrate. We found that activated CDK5 phosphorylated serine 108 in CLIC4, increasing CLIC4 protein stability, and accumulation. Pharmacological inhibition or shRNA-mediated silencing of CDK5 decreased CLIC4 levels in neurons. Moreover, CLIC4 overexpression led to neuronal apoptosis, whereas knockdown or pharmacological inhibition of CLIC4 attenuated H2O2-induced neuronal apoptosis. These results implied that CLIC4, by acting as a substrate of CDK5, mediated neuronal apoptosis induced by aberrant CDK5 activation. Targeting CLIC4 in neurons may therefore provide a therapeutic approach for managing progressive neurodegenerative diseases that arise from neuronal apoptosis.


Assuntos
Apoptose/fisiologia , Canais de Cloreto/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Animais , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Quinase 5 Dependente de Ciclina , Eletroporação , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Fosforilação , Transdução de Sinais/fisiologia
19.
Neuron ; 100(3): 551-563.e7, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30220511

RESUMO

Astrocyte dysfunction and inflammation are associated with the pathogenesis of major depressive disorder (MDD). However, the mechanisms underlying these effects remain largely unknown. Here, we found that multiple endocrine neoplasia type 1 (Men1; protein: menin) expression is attenuated in the brain of mice exposed to CUMS (chronic unpredictable mild stress) or lipopolysaccharide. Astrocyte-specific reduction of Men1 (GcKO) led to depressive-like behaviors in mice. We observed enhanced NF-κB activation and IL-1ß production with menin deficiency in astrocytes, where depressive-like behaviors in GcKO mice were restored by NF-κB inhibitor or IL-1ß receptor antagonist. Importantly, we identified a SNP, rs375804228, in human MEN1, where G503D substitution is associated with a higher risk of MDD onset. G503D substitution abolished menin-p65 interactions, thereby enhancing NF-κB activation and IL-1ß production. Our results reveal a distinct astroglial role for menin in regulating neuroinflammation in depression, indicating that menin may be an attractive therapeutic target in MDD.


Assuntos
Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Estresse Psicológico/metabolismo , Adulto , Animais , Astrócitos/patologia , Células Cultivadas , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia
20.
Cell Rep ; 24(3): 701-712, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021166

RESUMO

Menin (MEN1) is a critical modulator of tissue development and maintenance. As such, MEN1 mutations are associated with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin is abundantly expressed in the nervous system, little is known with regard to its function in the adult brain. Here, we demonstrate that neuron-specific deletion of Men1 (CcKO) affects dendritic branching and spine formation, resulting in defects in synaptic function, learning, and memory. Furthermore, we find that menin binds to the p35 promoter region to facilitate p35 transcription. As a primary Cdk5 activator, p35 is expressed mainly in neurons and is critical for brain development and synaptic plasticity. Restoration of p35 expression in the hippocampus and cortex of Men1 CcKO mice rescues synaptic and cognitive deficits associated with Men1 deletion. These results reveal a critical role for menin in synaptic and cognitive function by modulating the p35-Cdk5 pathway.


Assuntos
Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Neurônios/metabolismo , Fosfotransferases/genética , Proteínas Proto-Oncogênicas/deficiência , Sinapses/metabolismo , Animais , Disfunção Cognitiva/complicações , Regulação da Expressão Gênica , Loci Gênicos , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Camundongos Knockout , Especificidade de Órgãos , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Sinapses/patologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA