Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Yao Xue Xue Bao ; 50(10): 1203-9, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26837163

RESUMO

Antibody-drug conjugate (ADC) is a new class of therapeutics composed of a monoclonal antibody and small cytotoxin moieties conjugated through a chemical linker. ADC molecules bind to the target antigens expressed on the tumor cell surfaces guided by the monoclonal antibody component. The binding ADC molecules can be internalized and subsequently the toxin moieties can be released within the tumor cells via chemical and/or enzymatic reactions to kill the target cells. The conjugation combines the merits of both components, i.e., the high target specificity of the monoclonal antibody and the highly potent cell killing activity of the cytotoxin moieties. However, such complexities make the pharmacokinetic and metabolic studies of ADCs highly challenging. The major challenges should include characterization of absorption, distribution, metabolism and excretion, investigation of underlying mechanisms, assessment of pharmacokinetic- pharmacodynamic relationship, and analytical method development of ADC drugs. This review will discuss common pharmacokinetic issues and considerations, as well as tools and strategies that can be utilized to characterize the pharmacokinetic and metabolic properties of ADCs.


Assuntos
Anticorpos Monoclonais/farmacocinética , Imunoconjugados/farmacocinética , Citotoxinas/farmacocinética , Humanos , Neoplasias/tratamento farmacológico
2.
Drug Metab Dispos ; 40(3): 539-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22180047

RESUMO

Sunitinib is an oral multitargeted tyrosine kinase inhibitor approved for the treatment of advanced renal cell carcinoma, imatinib-refractory gastrointestinal stromal tumor, and advanced pancreatic neuroendocrine tumors. The current studies were conducted to characterize the pharmacokinetics, distribution, and metabolism of sunitinib after intravenous and/or oral administrations of [(14)C]sunitinib in rats (5 mg/kg i.v., 15 mg/kg p.o.), monkeys (6 mg/kg p.o.), and humans (50 mg p.o.). After oral administration, plasma concentration of sunitinib and total radioactivity peaked from 3 to 8 h. Plasma terminal elimination half-lives of sunitinib were 8 h in rats, 17 h in monkeys, and 51 h in humans. The majority of radioactivity was excreted to the feces with a smaller fraction of radioactivity excreted to urine in all three species. The bioavailability in female rats was close to 100%, suggesting complete absorption of sunitinib. Whole-body autoradioluminography suggested radioactivity was distributed throughout rat tissues, with the majority of radioactivity cleared within 72 h. Radioactivity was eliminated more slowly from pigmented tissues. Sunitinib was extensively metabolized in all species. Many metabolites were detected both in urine and fecal extracts. The main metabolic pathways were N-de-ethylation and hydroxylation of indolylidene/dimethylpyrrole. N-Oxidation/hydroxylation/desaturation/deamination of N,N'-diethylamine and oxidative defluorination were the minor metabolic pathways. Des-ethyl metabolite M1 was the major circulating metabolite in all three species.


Assuntos
Indóis/metabolismo , Indóis/farmacocinética , Pirróis/metabolismo , Pirróis/farmacocinética , Absorção/fisiologia , Administração Oral , Adulto , Animais , Disponibilidade Biológica , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/metabolismo , Isótopos de Carbono/urina , Radioisótopos de Carbono , Fezes/química , Feminino , Meia-Vida , Humanos , Indóis/administração & dosagem , Indóis/urina , Injeções Intravenosas/métodos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Pirróis/administração & dosagem , Pirróis/urina , Ratos , Ratos Sprague-Dawley , Sunitinibe , Distribuição Tecidual , Adulto Jovem
3.
Rapid Commun Mass Spectrom ; 21(20): 3317-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17879390

RESUMO

Carbamazepine (CBZ)-induced idiosyncratic toxicities are commonly believed to be related to the formation of reactive metabolites. CBZ is metabolized primarily into carbamazepine-10,11-epoxide (CBZE), 2-hydroxycarbamazepine (2-OHCBZ) and 3-hydroxycarbamazepine (3-OHCBZ), in human liver microsomes (HLM). Over the past two decades, the 2,3-arene oxidation has been commonly assumed to be the major bioactivation pathway of CBZ. Recently, CBZE has been also confirmed to be chemically reactive. In order to identify other possible primary and sequential CBZ bioactivation pathways, individual HLM incubations of CBZ, CBZE, 2-OHCBZ and 3-OHCBZ were conducted in the presence of glutathione (GSH). In the CBZ incubation, a variety of GSH adducts were formed via individual or combined pathways of 10,11-epoxidation, arene oxidation and iminoquinone formation. In the CBZE incubation, the only detected GSH adducts were CBZE-SG1 and CBZE-SG2, which represented the two most abundant conjugates observed in the CBZ incubation. In the incubation of either 2-OHCBZ or 3-OHCBZ, a number of sequential GSH adducts were observed. However, none of the 2-OHCBZ-derived GSH adducts were detected in the CBZ incubation. Meanwhile, several GSH adducts were only observed in the CBZ incubation. In conclusion, CBZ can be bioactivated in HLM via 10,11-epoxidation, 2,3-arene oxidation, and several other pathways. In addition, the sequential bioactivation of 3-OHCBZ appeared to play a more important role than that of either CBZE or 2-OHCBZ in the overall bioactivation of CBZ in HLM. The identification of several new bioactivation pathways of CBZ in HLM demonstrates that possible CBZ bioactivation can be more complex than previously thought.


Assuntos
Anticonvulsivantes/farmacocinética , Carbamazepina/farmacocinética , Cromatografia Líquida de Alta Pressão , Microssomos Hepáticos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Biotransformação , Glutationa/metabolismo , Humanos
4.
Drug Metab Dispos ; 33(12): 1920-4, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16204461

RESUMO

The clinical use of carbamazepine (CBZ), an anticonvulsant, is associated with a variety of idiosyncratic adverse reactions that are likely related to the formation of chemically reactive metabolites. CBZ-10,11-epoxide (CBZE), a pharmacologically active metabolite of CBZ, is so stable in vitro and in vivo that the potential for the epoxide to covalently interact with macromolecules has not been fully explored. In this study, two glutathione (GSH) adducts were observed when CBZE was incubated with GSH in the absence of biological matrices and cofactors (e.g., liver microsomes and NADPH). The chemical reactivity of CBZE was further confirmed by the in vitro finding that [14C]CBZE formed covalent protein adducts in human plasma as well as in human liver microsomes (HLMs) without NADPH. The two GSH adducts formed in the chemical reaction of CBZE were identical to the two major GSH adducts observed in the HLM incubation of CBZ, indicating that the 10,11-epoxidation represents a bioactivation pathway of CBZ. The two GSH adducts were isolated and identified as two diastereomers of 10-hydroxy-11-glutathionyl-CBZ by NMR. In addition, the covalent binding of [14C]CBZE was significantly increased in the HLM incubation upon addition of NADPH, indicating that CBZE can be further bioactivated by HLMs. To our knowledge, this is the first time the metabolite CBZE has been confirmed for its ability to form covalent protein adducts and the identity of the two CBZE-glutathionyl adducts has been confirmed by NMR. These represent important findings in the bioactivation mechanism of CBZ.


Assuntos
Carbamazepina/análogos & derivados , Carbamazepina/metabolismo , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA