Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103293, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39094399

RESUMO

OBJECTIVE: Doxorubicin (DOX)-induced cardiotoxicity limits the application of DOX in cancer patients. Currently, there is no effective prevention or treatment for DOX-induced cardiotoxicity. The cellular repressor of E1A-stimulated genes (CREG1) is a cardioprotective factor that plays an important role in the maintenance of cardiomyocytes differentiation and homeostasis. However, the role and mechanism of CREG1 in DOX-induced cardiotoxicity has not yet been elucidated. METHODS: In vivo, C57BL/6J mice, CREG1 transgenic and cardiac-specific CREG1 knockout mice were used to establish a DOX-induced cardiotoxicity model. H&E staining, Masson's trichrome, WGA staining, real-time PCR, and western blotting were performed to examine fibrosis and ferroptosis in the myocardium. In vitro, neonatal mouse cardiomyocytes (NMCMs) were cultured and stimulated with DOX, CREG1-overexpressed adenovirus, and small interfering RNA was used to establish CREG1 overexpression or knockdown cardiomyocytes. Transcriptomics, real-time PCR, western blotting, and immunoprecipitation were used to examine the roles and mechanisms of CREG1 in cardiomyocytes ferroptosis. RESULTS: The mRNA and protein levels of CREG1 were reduced in the hearts and NMCMs after DOX treatment. CREG1 overexpression alleviated myocardial damage and inhibited DOX-induced ferroptosis in the myocardium. CREG1 deficiency in the heart aggravated DOX-induced cardiotoxicity and ferroptosis. In vitro, CREG1 overexpression inhibited cardiomyocytes ferroptosis induced by DOX, and CREG1 knockdown aggravated DOX-induced cardiotoxicity. Mechanistically, CREG1 inhibited the mRNA and protein expression of pyruvate dehydrogenase kinase 4 (PDK4) by regulating the F-box and WD repeat domain containing 7 (FBXW7)-forkhead box O1 (FOXO1) pathway. PDK4 deficiency reversed the effects of CREG1 knockdown on cardiomyocytes ferroptosis following DOX treatment. CONCLUSION: CREG1 alleviated DOX-induced cardiotoxicity by inhibiting ferroptosis in cardiomyocytes. Our findings may help clarify the new roles of CREG1 in the development of DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Animais , Doxorrubicina/efeitos adversos , Ferroptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxicidade/genética , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Proteínas de Homeodomínio , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723872

RESUMO

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apoptose , Músculo Liso Vascular , Quercetina , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Angiotensina II/farmacologia , Camundongos , Quercetina/análogos & derivados , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38546450

RESUMO

Two Gram-stain-negative, rod-shaped and non-motile strains, designated as DY56-A-20T and G39T, were isolated from deep-sea sediment of the Pacific Ocean and deep-sea seawater of the Indian Ocean, respectively. Strain DY56-A-20T was found to grow at 15-37 °C (optimum, 28 °C), at pH 6.0-10.0 (optimum, pH 6.5-7.0) and in 0.5-6.0 % (w/v) NaCl (optimum, 1.0-2.0 %), while strain G39T was found to grow at 10-42 °C (optimum, 35-40 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.0) and in 0-12.0 % (w/v) NaCl (optimum, 1.0-2.0 %). The 16S rRNA gene sequence identity analysis indicated that strain DY56-A-20T had the highest sequence identity with Qipengyuania marisflavi KEM-5T (97.6 %), while strain G39T displayed the highest sequence identity with Qipengyuania citrea H150T (98.8 %). The phylogenomic reconstruction indicated that both strains formed independent clades within the genus Qipengyuania. The digital DNA-DNA hybridization and average nucleotide identity values between strains DY56-A-20T/G39T and Qipengyuania/Erythrobacter type strains were 17.8-23.8 % and 70.7-81.1 %, respectively, which are below species delineation thresholds. The genome DNA G+C contents were 65.0 and 63.5 mol% for strains DY56-A-20T and G39T, respectively. The predominant cellular fatty acids (>10 %) of strain DY56-A-20T were C17 : 1 ω6c, summed feature 8 and summed feature 3, and the major cellular fatty acids of strain G39T were C17 : 1 ω6c and summed feature 8. The major polar lipids in both strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and an unidentified polar lipid. The only respiratory quinone present in both strains was ubiquinone-10. Based on those genotypic and phenotypic results, the two strains represent two novel species belonging to the genus Qipengyuania, for which the names Qipengyuania benthica sp. nov. and Qipengyuania profundimaris sp. nov. are proposed. The type strain of Q. benthica is DY56-A-20T (=MCCC M27941T=KCTC 92309T), and the type strain of Q. profundimaris is G39T (=MCCC M30353T=KCTC 8208T).


Assuntos
Alphaproteobacteria , Ácidos Graxos , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
4.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861399

RESUMO

Two Gram-stain-negative, aerobic, non-motile and short-rod-shaped bacteria, designated as strains GL-53T and GL-15-2-5, were isolated from the seamount area of the West Pacific Ocean and identified using a polyphasic taxonomic approach. The growth of strains GL-53ᵀ and GL-15-2-5 occurred at pH 5.5-10.0, 4-40 °C (optimum at 28 °C) and 0-10.0 % NaCl concentrations (optimum at 0-5.0 %). On the basis of 16S rRNA gene sequence analysis, strains GL-53ᵀ and GL-15-2-5 exhibited the highest similarity to Rheinheimera lutimaris YQF-2T (98.4 %), followed by Rheinheimera pacifica KMM 1406T (98.1 %), Rheinheimera nanhaiensis E407-8T (97.4 %), Rheinheimera aestuarii H29T (97.4 %), Rheinheimera hassiensis E48T (97.2 %) and Rheinheimera aquimaris SW-353T (97.2 %). Phylogenetic analysis revealed that the isolates were affiliated with the genus Rheinheimera and represented an independent lineage. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The sole isoprenoid quinone was ubiquinone 8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid (and one unidentified glycolipid. The DNA G+C content was 48.5 mol%. The average nucleotide identity, average amino acid identity and in silico DNA-DNA hybridization values among the genomes of strain GL-53ᵀ and the related strains in the genus Rheinheimera were 75.5-90.1 %, 67.5-93.9 % and 21.4-41.4 %, respectively. Based on their phenotypic, chemotaxonomic and genotypic properties, the two strains were identified as representing a novel species of the genus Rheinheimera, for which the name Rheinheimera oceanensis sp. nov. is proposed. The type strain is GL-53T (=KCTC 82651T=MCCC M20598T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana
5.
JACC Basic Transl Sci ; 8(2): 155-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908661

RESUMO

Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA