Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Alzheimers Dement ; 20(10): 6948-6959, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39099181

RESUMO

INTRODUCTION: We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS: MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aß1-42], Aß1-40) were analyzed using logistic and analysis of covariance models. RESULTS: Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aß1-42 (p = 0.047), Aß1-42/Aß1-40 (p = 0.040), and Aß1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION: Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS: We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Cafeína , Disfunção Cognitiva , Fragmentos de Peptídeos , Proteínas tau , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Feminino , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cafeína/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso , Estudos de Coortes , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Pessoa de Meia-Idade
2.
Neurobiol Dis ; 199: 106603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002811

RESUMO

Caffeine consumption outcomes on Amyotrophic Lateral Sclerosis (ALS) including progression, survival and cognition remain poorly defined and may depend on its metabolization influenced by genetic variants. 378 ALS patients with a precise evaluation of their regular caffeine consumption were monitored as part of a prospective multicenter study. Demographic, clinical characteristics, functional disability as measured with revised ALS Functional Rating Scale (ALSFRS-R), cognitive deficits measured using Edinburgh Cognitive and Behavioural ALS Screen (ECAS), survival and riluzole treatment were recorded. 282 patients were genotyped for six single nucleotide polymorphisms tagging different genes involved in caffeine intake and/or metabolism: CYP1A1 (rs2472297), CYP1A2 (rs762551), AHR (rs4410790), POR (rs17685), XDH (rs206860) and ADORA2A (rs5751876) genes. Association between caffeine consumption and ALSFRS-R, ALSFRS-R rate, ECAS and survival were statistically analyzed to determine the outcome of regular caffeine consumption on ALS disease progression and cognition. No association was observed between caffeine consumption and survival (p = 0.25), functional disability (ALSFRS-R; p = 0.27) or progression of ALS (p = 0.076). However, a significant association was found with higher caffeine consumption and better cognitive performance on ECAS scores in patients carrying the C/T and T/T genotypes at rs2472297 (p-het = 0.004). Our results support the safety of regular caffeine consumption on ALS disease progression and survival and also show its beneficial impact on cognitive performance in patients carrying the minor allele T of rs2472297, considered as fast metabolizers, that would set the ground for a new pharmacogenetic therapeutic strategy.


Assuntos
Esclerose Lateral Amiotrófica , Cafeína , Citocromo P-450 CYP1A2 , Progressão da Doença , Polimorfismo de Nucleotídeo Único , Receptor A2A de Adenosina , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Receptor A2A de Adenosina/genética , Citocromo P-450 CYP1A2/genética , Cognição/fisiologia , Cognição/efeitos dos fármacos , Estudos Prospectivos , Citocromo P-450 CYP1A1/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Disfunção Cognitiva/genética , Riluzol/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos
3.
Brain ; 147(8): 2691-2705, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964748

RESUMO

Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Transtornos da Memória , Camundongos Transgênicos , Neurônios , Receptor A2A de Adenosina , Sinapses , Animais , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Sinapses/metabolismo , Sinapses/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Hipocampo/metabolismo , Hipocampo/patologia , Presenilina-1/genética , Modelos Animais de Doenças , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Masculino , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
5.
J Neurol Neurosurg Psychiatry ; 95(11): 1046-1053, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38658136

RESUMO

BACKGROUND: Among plasma biomarkers for Alzheimer's disease (AD), pTau181 and pTau217 are the most promising. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHOD: pTau181 and pTau217 were quantified using, Quanterix and ALZpath, SIMOA assays in the well-characterised prospective multicentre BALTAZAR (Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk) cohort of participants with mild cognitive impairment (MCI). RESULTS: Among participants with MCI, 55% were Aß+ and 29% developed dementia due to AD. pTau181 and pTau217 were higher in the Aß+ population with fold change of 1.5 and 2.7, respectively. MCI that converted to AD also had higher levels than non-converters, with HRs of 1.38 (1.26 to 1.51) for pTau181 compared with 8.22 (5.45 to 12.39) for pTau217. The area under the curve for predicting Aß+ was 0.783 (95% CI 0.721 to 0.836; cut-point 2.75 pg/mL) for pTau181 and 0.914 (95% CI 0.868 to 0.948; cut-point 0.44 pg/mL) for pTau217. The high predictive power of pTau217 was not improved by adding age, sex and apolipoprotein E ε4 (APOEε4) status, in a logistic model. Age, APOEε4 and renal dysfunction were associated with pTau levels, but the clinical performance of pTau217 was only marginally altered by these factors. Using a two cut-point approach, a 95% positive predictive value for Aß+ corresponded to pTau217 >0.8 pg/mL and a 95% negative predictive value at <0.23 pg/mL. At these two cut-points, the percentages of MCI conversion were 56.8% and 9.7%, respectively, while the annual rates of decline in Mini-Mental State Examination were -2.32 versus -0.65. CONCLUSIONS: Plasma pTau217 and pTau181 both correlate with AD, but the fold change in pTau217 makes it better to diagnose cerebral amyloidosis, and predict cognitive decline and conversion to AD dementia.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva , Proteínas tau , Humanos , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Masculino , Feminino , Idoso , Proteínas tau/sangue , Biomarcadores/sangue , Peptídeos beta-Amiloides/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Imunoensaio , Idoso de 80 Anos ou mais , Estudos Prospectivos , Fragmentos de Peptídeos/sangue , Progressão da Doença , Pessoa de Meia-Idade
6.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484799

RESUMO

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Assuntos
Proteínas Intrinsicamente Desordenadas , Anticorpos de Domínio Único , Proteínas tau , Humanos , Epitopos/química , Epitopos/imunologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Peptídeos/química , Peptídeos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Proteínas tau/química , Proteínas tau/imunologia
7.
Bioeng Transl Med ; 8(1): e10360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684076

RESUMO

Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.

8.
Neuropharmacology ; 226: 109379, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572177

RESUMO

Adenosine signals through four distinct G protein-coupled receptors that are located at various synapses, cell types and brain areas. Through them, adenosine regulates neuromodulation, neuronal signaling, learning and cognition as well as the sleep-wake cycle, all strongly impacted in neurogenerative disorders, among which Alzheimer's Disease (AD). AD is a complex form of cognitive deficits characterized by two pathological hallmarks: extracellular deposits of aggregated ß-amyloid peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. Both lesions contribute to the early dysfunction and loss of synapses which are strongly associated to the development of cognitive decline in AD patients. The present review focuses on the pathophysiological impact of the A2ARs dysregulation observed in cognitive area from AD patients. We are reviewing not only evidence of the cellular changes in A2AR levels in pathological conditions but also describe what is currently known about their consequences in term of synaptic plasticity, neuro-glial miscommunication and memory abilities. We finally summarize the proof-of-concept studies that support A2AR as credible targets and the clinical interest to repurpose adenosine drugs for the treatment of AD and related disorders. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/metabolismo , Adenosina , Tauopatias/tratamento farmacológico , Proteínas tau , Peptídeos beta-Amiloides/metabolismo , Receptor A2A de Adenosina/metabolismo
9.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377661

RESUMO

Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.


Assuntos
Antineoplásicos , Neuralgia , Animais , Camundongos , Cisplatino/efeitos adversos , Purinas/farmacologia , Neuralgia/induzido quimicamente , Receptor A2A de Adenosina , Antineoplásicos/efeitos adversos
10.
Science ; 377(6610): eabq4515, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048943

RESUMO

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Assuntos
Cognição , Disfunção Cognitiva , Síndrome de Down , Hormônio Liberador de Gonadotropina , Transtornos do Olfato , Adulto , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
11.
J Neurosci ; 42(25): 5102-5114, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35606145

RESUMO

Increasing loss of structure and function of neurons and decline in cognitive function is commonly seen during the progression of neurologic diseases, although the causes and initial symptoms of individual diseases are distinct. This observation suggests a convergence of common degenerative features. In myotonic dystrophy type 1 (DM1), the expression of expanded CUG RNA induces neurotransmission dysfunction before axon and dendrite degeneration and reduced MBNL2 expression associated with aberrant alternative splicing. The role of loss of function of MBNL2 in the pathogenesis of neurodegeneration and the causal mechanism of neurodegeneration-reduced expression of MBNL2 remain elusive. Here, we show that increased MBNL2 expression is associated with neuronal maturation and required for neuronal morphogenesis and the fetal to adult developmental transition of RNA processing. Neurodegenerative conditions including NMDA receptor (NMDAR)-mediated excitotoxicity and dysregulated calcium homeostasis triggered nuclear translocation of calpain-2, thus resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to developmental patterns. Nuclear expression of calpain-2 resembled its developmental pattern and was associated with MBNL2 degradation. Knock-down of calpain-2 expression or inhibition of calpain-2 nuclear translocation prevented neurodegeneration-reduced MBNL2 expression and dysregulated RNA processing. Increased calpain-2 nuclear translocation associated with reduced MBNL2 expression and aberrant RNA processing occurred in models for DM1 and Alzheimer's disease (AD) including EpA960/CaMKII-Cre mice of either sex and female APP/PS1 and THY-Tau22 mice. Our results identify a regulatory mechanism for MBNL2 downregulation and suggest that calpain-2-mediated MBNL2 degradation accompanied by re-induction of a developmental RNA processing program may be a converging pathway to neurodegeneration.SIGNIFICANCE STATEMENT Neurologic diseases share many features during disease progression, such as cognitive decline and brain atrophy, which suggests a common pathway for developing degenerative features. Here, we show that the neurodegenerative conditions glutamate-induced excitotoxicity and dysregulated calcium homeostasis induced translocation of the cysteine protease calpain-2 into the nucleus, resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to an embryonic pattern. Knock-down or inhibition of nuclear translocation of calpain-2 prevented MBNL2 degradation and maintained MBNL2-regulated RNA processing in the adult pattern. Models of myotonic dystrophy and Alzheimer's disease (AD) also showed calpain-2-mediated MBNL2 degradation and a developmental RNA processing program. Our studies suggest MBNL2 function disrupted by calpain-2 as a common pathway, thus providing an alternative therapeutic strategy for neurodegeneration.


Assuntos
Doença de Alzheimer , Calpaína/metabolismo , Distrofia Miotônica , Processamento Alternativo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Clin Endocrinol (Oxf) ; 97(1): 52-63, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470446

RESUMO

INTRODUCTION: Few studies have attempted to evaluate the early efficacy of first-generation somatostatin analogues in somatotroph macroadenomas. OBJECTIVE: To investigate the short-term efficacy of primary therapy with lanreotide 120 mg at 1 and 3 months on tumour shrinkage and ophthalmologic symptoms in newly diagnosed patients with acromegaly. DESIGN AND PATIENTS: This single-centre retrospective study included 21 patients with de novo acromegaly resulting from pituitary macroadenoma, with optic chiasm compression (Grade ≤ 2) and/or cavernous sinus invasion, treated with a monthly injection of lanreotide 120 mg. Clinical, hormonal, ophthalmologic and magnetic resonance imaging scan evaluations were conducted after the first and the third months of treatment. RESULTS: Tumour volume reduction was more pronounced at 1 month; mean volume change: -31.4 ± 19.5%, p < .0001 than between the first and third month of treatment; mean volume reduction: -20.6 ± 13.4%, p = .0009. The mean volume change between baseline and the third month was - 46.4 ± 21.6, (p < .0001). A significant volume reduction (≥25%) was observed in 61.9% of individuals (13/21) at the first month. Among 14 individuals with optic chiasm compression and visual field defects, visual field normalization or improvement were observed in seven cases (50%), stabilization in four cases (28.5%), and mild worsening in three cases (21.4%) at 1 month. The decrease in growth hormone and IGF-1 serum values was significant at 1 month. CONCLUSIONS: Primary treatment with lanreotide 120 mg in patients with somatotroph macroadenomas provides early significant tumour shrinkage with rapid improvement of visual symptoms at the end of the first month in 50% of patients.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Acromegalia/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I , Peptídeos Cíclicos , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/tratamento farmacológico , Estudos Retrospectivos , Somatostatina/análogos & derivados
13.
Nat Biomed Eng ; 6(2): 207-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145256

RESUMO

Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.


Assuntos
Distrofia Miotônica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Camundongos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Cancers (Basel) ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36612113

RESUMO

Recent reports suggested a role for microtubules in double-strand-DNA break repair. We herein investigated the role of the microtubule-associated protein Tau in radio- and chemotherapy. Noticeably, a lowered expression of Tau in breast cancer cell lines resulted in a significant decrease in mouse-xenograft breast tumor volume after doxorubicin or X-ray treatments. Furthermore, the knockdown of Tau impaired the classical nonhomologous end-joining pathway and led to an improved cellular response to both bleomycin and X-rays. Investigating the mechanism of Tau's protective effect, we found that one of the main mediators of response to double-stranded breaks in DNA, the tumor suppressor p53-binding protein 1 (53BP1), is sequestered in the cytoplasm as a consequence of Tau downregulation. We demonstrated that Tau allows 53BP1 to translocate to the nucleus in response to DNA damage by chaperoning microtubule protein trafficking. Moreover, Tau knockdown chemo-sensitized cancer cells to drugs forming DNA adducts, such as cisplatin and oxaliplatin, and further suggested a general role of Tau in regulating the nuclear trafficking of DNA repair proteins. Altogether, these results suggest that Tau expression in cancer cells may be of interest as a molecular marker for response to DNA-damaging anti-cancer agents. Clinically targeting Tau could sensitize tumors to DNA-damaging treatments.

15.
Med Sci (Paris) ; 37(12): 1133-1138, 2021 Dec.
Artigo em Francês | MEDLINE | ID: mdl-34928217

RESUMO

Extracellular Vesicles (EVs) are released by a wide diversity of cells. They contain proteins, RNAs and lipids that will be exchanged between these cells. They represent therefore a major form of intercellular communication in both physiological and pathological conditions. This is particularly relevant in the nervous system where neurons and glial cells form a very dense network where billions of connections are made. In this review, the different roles played by the EVs in a healthy brain to maintain cerebral homeostasis during development, synaptic transmission or axonal myelination will be discussed. In addition, the pathological aspects of EVs presence will also be addressed. In recent years, the EVs have emerged as major players in the spread of neurodegenerative diseases, in neuroinflammation and in tumor development, although they may also be beneficial in some conditions.


TITLE: Les vésicules extracellulaires - Actrices de la communication entre les cellules du système nerveux. ABSTRACT: Les vésicules extracellulaires (VE) sont libérées par une grande variété de cellules et contiennent des protéines, des ARN et des lipides, qui sont ainsi échangés entre ces cellules. Elles représentent donc un mode de communication intercellulaire majeur aussi bien en conditions physiologiques que pathologiques. C'est notamment le cas dans le système nerveux (SN) où les neurones et les cellules gliales forment un réseau très dense et où des milliards de connexions s'établissent. Cette revue fournit un aperçu des différents rôles joués par les VE dans un cerveau sain lors du renforcement des réseaux par exemple, mais également dans un cerveau malade où les VE participent, entre autres, à la progression des maladies neurodégénératives et tumorales.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Comunicação Celular , Sistema Nervoso Central , Humanos , Neuroglia
16.
Front Cell Dev Biol ; 9: 740550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722523

RESUMO

An extensive body of literature suggested a possible role of the microtubule-associated protein Tau in chromatin functions and/or organization in neuronal, non-neuronal, and cancer cells. How Tau functions in these processes remains elusive. Here we report that Tau expression in breast cancer cell lines causes resistance to the anti-cancer effects of histone deacetylase inhibitors, by preventing histone deacetylase inhibitor-inducible gene expression and remodeling of chromatin structure. We identify Tau as a protein recognizing and binding to core histone when H3 and H4 are devoid of any post-translational modifications or acetylated H4 that increases the Tau's affinity. Consistent with chromatin structure alterations in neurons found in frontotemporal lobar degeneration, Tau mutations did not prevent histone deacetylase-inhibitor-induced higher chromatin structure remodeling by suppressing Tau binding to histones. In addition, we demonstrate that the interaction between Tau and histones prevents further histone H3 post-translational modifications induced by histone deacetylase-inhibitor treatment by maintaining a more compact chromatin structure. Altogether, these results highlight a new cellular role for Tau as a chromatin reader, which opens new therapeutic avenues to exploit Tau biology in neuronal and cancer cells.

17.
ACS Chem Neurosci ; 12(20): 3885-3897, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34614352

RESUMO

Deformation, compression, or stretching of brain tissues cause diffuse axonal injury (DAI) and induce structural and functional alterations of astrocytes, the most abundant cell type in the brain. To gain further insight into the role of mechanically activated astrocytes on neuronal networks, this study was designed to investigate whether cytokines released by mechanically activated astrocytes can affect the growth and synaptic connections of cortical neuronal networks. Astrocytes were cultivated on elastic membranes and subjected to repetitive mechanical insults, whereas well-defined protein micropatterns were used to form standardized neuronal networks. GFAP staining showed that astrocytes were mechanically activated after two cycles of stretch and mesoscale discovery assays indicated that injured astrocytes released four major cytokines. To understand the role of these cytokines, neuronal networks were cultured with the supernatant of healthy or mechanically activated astrocytes, and the individual contribution of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) was studied. We found that the supernatant of two-cycle stretched astrocytes decreased presynaptic terminals and indicated that TNF-α must be considered a key player of the synaptic loss. Furthermore, our results indicate that cytokines released by injured astrocytes significantly modulate the balance between TNFR1 and TNFR2 receptors by enhancing R2 receptors. We demonstrated that TNF-α is not involved in this process, suggesting a predominant role of other secreted cytokines. Together, these results contribute to a better understanding of the consequences of repetitive astrocyte deformations and highlight the role of inflammatory signaling pathways in synaptic plasticity and modulation of TNFR1 and TNFR2 receptors.


Assuntos
Astrócitos , Receptores Tipo II do Fator de Necrose Tumoral , Células Cultivadas , Citocinas , Humanos , Fator de Necrose Tumoral alfa
18.
Cell Rep ; 36(9): 109574, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469732

RESUMO

Neuroinflammation in patients with Alzheimer's disease (AD) and related mouse models has been recognized for decades, but the contribution of the recently described meningeal immune population to AD pathogenesis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-17 (IL-17)-producing cells, mostly γδ T cells, in the brain and the meninges of female, but not male, mice, concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects precede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17 in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a finely regulated balance of "inflammatory" cytokines derived from the meningeal immune system.


Assuntos
Doença de Alzheimer/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Cognição , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Doenças Neuroinflamatórias/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-17/antagonistas & inibidores , Linfócitos Intraepiteliais/efeitos dos fármacos , Masculino , Memória de Curto Prazo , Camundongos da Linhagem 129 , Camundongos Transgênicos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/psicologia , Plasticidade Neuronal , Sinapses/efeitos dos fármacos , Sinapses/patologia
19.
Brain ; 144(10): 3142-3158, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34086871

RESUMO

Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1-50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.


Assuntos
Terapia Biológica/métodos , Plaquetas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Administração Intranasal , Animais , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Acta Neuropathol Commun ; 9(1): 112, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158119

RESUMO

Tau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration. We demonstrated that treatment with an inhibitor (J4) of equilibrative nucleoside transporter 1 (ENT1) exerted beneficial effects in a mouse model of Tauopathy. Treatment with J4 not only reduced Tau hyperphosphorylation but also rescued memory deficits, mitochondrial dysfunction, synaptic loss, and abnormal expression of immune-related gene signatures. These beneficial effects were particularly ascribed to the ability of J4 to suppress the overactivation of AMPK (an energy reduction sensor), suggesting that normalization of energy dysfunction mitigates neuronal dysfunctions in Tauopathy. Collectively, these data highlight that targeting adenosine metabolism is a novel strategy for tauopathies.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA