Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38697834

RESUMO

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Luz , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Estrutura Molecular , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química , Tamanho da Partícula , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Processos Fotoquímicos , Teoria da Densidade Funcional
2.
Nanomedicine (Lond) ; 18(28): 2105-2123, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127591

RESUMO

Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.


This work introduces a new technique for copper-containing drugs encapsulation in a drug-delivery system. The drug, a promising copper compound, is embedded in lipid nanovesicles ­ tiny fat particles ­ for intravenous injection. In addition to chemical characterization of the obtained drug form, tests on cancer cells showed a noticeable effect, whereas healthy cell types were not harmed. Copper possesses not only anticancer effects but also antimicrobial properties, which are also shown by the drug form, and a test of combined suppression of cancer cell lines and bacteria was successful. Hence, the obtained drug form has the potential for dual treatment of cancer and bacterial infections.


Assuntos
Infecções Bacterianas , Neoplasias da Mama , Humanos , Feminino , Lipossomos , Cobre/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
3.
ACS Appl Mater Interfaces ; 15(10): 12882-12894, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854172

RESUMO

Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.


Assuntos
Antineoplásicos , Pró-Fármacos , Cisplatino/farmacologia , Cisplatino/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA