Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732000

RESUMO

Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Inflamação , Neoplasias Hepáticas , Mitocôndrias , Piroptose , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Mitocôndrias/metabolismo , Animais
2.
Noncoding RNA ; 10(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804361

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasia, characterized by early metastasis, low diagnostic rates at early stages, resistance to drugs, and poor prognosis. There is an urgent need to better characterize this disease in order to identify efficient diagnostic/prognostic biomarkers. Since microRNAs (miRNAs) contribute to oncogenesis and metastasis formation in PDAC, they are considered potential candidates for fulfilling this task. In this work, the levels of two miRNA subsets (involved in chemoresistance or with oncogenic/tumor suppressing functions) were investigated in a panel of PDAC cell lines and liquid biopsies of a small cohort of patients. We used RT-qPCR and droplet digital PCR (ddPCR) to measure the amounts of cellular- and vesicle-associated, and circulating miRNAs. We found that both PDAC cell lines, also after gemcitabine treatment, and patients showed low amounts of cellular-and vesicle-associated miR-155-5p, compared to controls. Interestingly, we did not find any differences when we analyzed circulating miR-155-5p. Furthermore, vesicle-related miR-27a-3p increased in cancer patients compared to the controls, while circulating let-7a-5p, miR-221-3p, miR-23b-3p and miR-193a-3p presented as dysregulated in patients compared to healthy individuals. Our results highlight the potential clinical significance of these analyzed miRNAs as non-invasive diagnostic molecular tools to characterize PDAC.

3.
Cell Commun Signal ; 22(1): 165, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448982

RESUMO

BACKGROUND: Among the mechanisms of mitochondrial quality control (MQC), generation of mitochondria-derived vesicles (MDVs) is a process to avoid complete failure of mitochondria determining lysosomal degradation of mitochondrial damaged proteins. In this context, RAB7, a late endocytic small GTPase, controls delivery of MDVs to late endosomes for subsequent lysosomal degradation. We previously demonstrated that RAB7 has a pivotal role in response to cisplatin (CDDP) regulating resistance to the drug by extracellular vesicle (EVs) secretion. METHODS: Western blot and immunofluorescence analysis were used to analyze structure and function of endosomes and lysosomes in CDDP chemosensitive and chemoresistant ovarian cancer cell lines. EVs were purified from chemosensitive and chemoresistant cells by ultracentrifugation or immunoisolation to analyze their mitochondrial DNA and protein content. Treatment with cyanide m-chlorophenylhydrazone (CCCP) and RAB7 modulation were used, respectively, to understand the role of mitochondrial and late endosomal/lysosomal alterations on MDV secretion. Using conditioned media from chemoresistant cells the effect of MDVs on the viability after CDDP treatment was determined. Seahorse assays and immunofluorescence analysis were used to study the biochemical role of MDVs and the uptake and intracellular localization of MDVs, respectively. RESULTS: We observed that CDDP-chemoresistant cells are characterized by increased MDV secretion, impairment of late endocytic traffic, RAB7 downregulation, an increase of RAB7 in EVs, compared to chemosensitive cells, and downregulation of the TFEB-mTOR pathway overseeing lysosomal and mitochondrial biogenesis and turnover. We established that MDVs can be secreted rather than delivered to lysosomes and are able to deliver CDDP outside the cells. We showed increased secretion of MDVs by chemoresistant cells ultimately caused by the extrusion of RAB7 in EVs, resulting in a dramatic drop in its intracellular content, as a novel mechanism to regulate RAB7 levels. We demonstrated that MDVs purified from chemoresistant cells induce chemoresistance in RAB7-modulated process, and, after uptake from recipient cells, MDVs localize to mitochondria and slow down mitochondrial activity. CONCLUSIONS: Dysfunctional MQC in chemoresistant cells determines a block in lysosomal degradation of MDVs and their consequent secretion, suggesting that MQC is not able to eliminate damaged mitochondria whose components are secreted becoming effectors and potential markers of chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Lisossomos , Neoplasias Ovarianas/tratamento farmacológico , Mitocôndrias , Cisplatino/farmacologia
4.
Exp Gerontol ; 178: 112203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172915

RESUMO

Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Animais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mutação , Envelhecimento/genética , Neoplasias/genética
5.
J Biomed Sci ; 29(1): 45, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765029

RESUMO

BACKGROUND: In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS: A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS: The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS: Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.


Assuntos
Dineínas , Neisseria meningitidis , Dineínas/química , Dineínas/metabolismo , Células Epiteliais/metabolismo , Neisseria meningitidis/metabolismo , Piroptose , Saccharomyces cerevisiae/metabolismo
6.
ACS Appl Mater Interfaces ; 14(16): 18133-18149, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404562

RESUMO

pH balance and regulation within organelles are fundamental to cell homeostasis and proliferation. The ability to track pH in cells becomes significantly important to understand these processes in detail. Fluorescent sensors based on micro- and nanoparticles have been applied to measure intracellular pH; however, an accurate methodology to precisely monitor acidification kinetics of organelles in living cells has not been established, limiting the scope of this class of sensors. Here, silica-based fluorescent microparticles were utilized to probe the pH of intracellular organelles in MDA-MB-231 and MCF-7 breast cancer cells. In addition to the robust, ratiometric, trackable, and bioinert pH sensors, we developed a novel dimensionality reduction algorithm to automatically track and screen massive internalization events of pH sensors. We found that the mean acidification time is comparable among the two cell lines (ΔTMCF-7 = 16.3 min; ΔTMDA-MB-231 = 19.5 min); however, MCF-7 cells showed a much broader heterogeneity in comparison to MDA-MB-231 cells. The use of pH sensors and ratiometric imaging of living cells in combination with a novel computational approach allow analysis of thousands of events in a computationally inexpensive and faster way than the standard routes. The reported methodology can potentially be used to monitor pH as well as several other parameters associated with endocytosis.


Assuntos
Corantes Fluorescentes , Organelas , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7
7.
Cells ; 11(3)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159308

RESUMO

Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by five mutations in the RAB7A gene. Autophagy and late endocytic trafficking were already characterized in CMT2B. Indeed, impairment of autophagy and an increase in lysosomal degradative activity were found in cells expressing the mutant proteins. Recently, we described a novel RAB7 mutation associated with predominantly motor CMT2 and impaired EGFR trafficking. With the aim to analyze the autophagy process and lysosomal activity in CMT2B fibroblasts carrying the p.K126R RAB7 novel mutation and to investigate further the causes of the different phenotype, we have performed Western blot, immunofluorescence and cytometric analyses monitoring autophagic markers and endocytic proteins. Moreover, we investigated lipophagy by analyzing accumulation of lipid droplets and their co-localization with endolysosomal degradative compartments. We found that cells expressing the RAB7K126R mutant protein were characterized by impairment of autophagy and lipophagy processes and by a moderate increase in lysosomal activity compared to the previously studied cells carrying the RAB7V162M mutation. Thus, we concluded that EGFR trafficking alterations and a moderate increase in lysosomal activity with concomitant impairment of autophagy could induce the specific predominantly motor phenotype observed in K126R patients.


Assuntos
Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Autofagia/genética , Doença de Charcot-Marie-Tooth , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Humanos , Laminopatias , Lisossomos/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
Neural Regen Res ; 17(3): 534-542, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380883

RESUMO

Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions. Via this route, several molecules (e.g., nucleic acids, proteins, metabolites) can be transferred to proximal and distant targets to convey specific information. Extracellular vesicle-associated cargo molecules have been proposed as markers of several disease conditions for their potential of tracking down the generating cell. Indeed, circulating extracellular vesicles may represent biomarkers of dysfunctional cellular quality control systems especially in conditions characterized by the accrual of intracellular misfolded proteins. Furthermore, the identification of extracellular vesicles as tools for the delivery of nucleic acids or other cargo molecules to diseased tissues makes these circulating shuttles possible targets for therapeutic development. The increasing interest in the study of extracellular vesicles as biomarkers resides mainly in the fact that the identification of peripheral levels of extracellular vesicle-associated proteins might reflect molecular events occurring in hardly accessible tissues, such as the brain, thereby serving as a "brain liquid biopsy". The exploitation of extracellular vesicles for diagnostic and therapeutic purposed might offer unprecedented opportunities to develop personalized approaches. Here, we discuss the bright and dark sides of extracellular vesicles in the setting of two main neurodegenerative diseases (i.e., Parkinson's and Alzheimer's diseases). A special focus will be placed on the possibility of using extracellular vesicles as biomarkers for the two conditions to enable disease tracking and treatment monitoring.

9.
Cells ; 10(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205944

RESUMO

Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC.


Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Animais , Vesículas Extracelulares/patologia , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Prognóstico
10.
Cancers (Basel) ; 13(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066419

RESUMO

RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.

11.
Sci Rep ; 11(1): 4615, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633298

RESUMO

V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , ATPases Vacuolares Próton-Translocadoras/fisiologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , ATPases Vacuolares Próton-Translocadoras/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Cell Mol Life Sci ; 78(1): 351-372, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32280996

RESUMO

The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Laminopatias/patologia , Proteínas rab de Ligação ao GTP/genética , Catepsinas/metabolismo , Movimento Celular , Células Cultivadas , Reprogramação Celular , Doença de Charcot-Marie-Tooth/metabolismo , Endocitose , Receptores ErbB/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminopatias/metabolismo , Lisossomos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Polimorfismo de Nucleotídeo Único , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Front Immunol ; 11: 601740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304353

RESUMO

Sterile inflammation develops as part of an innate immunity response to molecules released upon tissue injury and collectively indicated as damage-associated molecular patterns (DAMPs). While coordinating the clearance of potential harmful stimuli, promotion of tissue repair, and restoration of tissue homeostasis, a hyper-activation of such an inflammatory response may be detrimental. The complex regulatory pathways modulating DAMPs generation and trafficking are actively investigated for their potential to provide relevant insights into physiological and pathological conditions. Abnormal circulating extracellular vesicles (EVs) stemming from altered endosomal-lysosomal system have also been reported in several age-related conditions, including cancer and neurodegeneration, and indicated as a promising route for therapeutic purposes. Along this pathway, mitochondria may dispose altered components to preserve organelle homeostasis. However, whether a common thread exists between DAMPs and EVs generation is yet to be clarified. A deeper understanding of the highly complex, dynamic, and variable intracellular and extracellular trafficking of DAMPs and EVs, including those of mitochondrial origin, is needed to unveil relevant pathogenic pathways and novel targets for drug development. Herein, we describe the mechanisms of generation of EVs and mitochondrial-derived vesicles along the endocytic pathway and discuss the involvement of the endosomal-lysosomal in cancer and neurodegeneration (i.e., Alzheimer's and Parkinson's disease).


Assuntos
Alarminas/metabolismo , Vesículas Extracelulares/metabolismo , Imunidade Inata , Inflamação/metabolismo , Animais , Endossomos/imunologia , Endossomos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Lisossomos/imunologia , Lisossomos/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Transporte Proteico , Transdução de Sinais
14.
Cells ; 9(8)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806510

RESUMO

Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues, being involved in growth, differentiation, maintenance and repair of various tissues and organs. The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous system, other growth factors, and thus other receptors, are important for growth, differentiation and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a long time, the role of EGFR in the nervous system has been underestimated and poorly investigated. However, EGFR is expressed both in the central and peripheral nervous systems and it has been demonstrated to have specific important neurotrophic functions, in particular in the central nervous system. This review discusses the role of EGFR in regulating differentiation and functions of neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.


Assuntos
Sistema Nervoso Central/metabolismo , Receptores ErbB/metabolismo , Doenças Neurodegenerativas/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo
15.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326241

RESUMO

The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Laminopatias/genética , Mutação/genética , Proteólise , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Animais , Sequência de Bases , Biópsia , Linhagem Celular , Receptores ErbB/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Ligantes , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , Crescimento Neuronal , Linhagem , Periferinas/metabolismo , Fenótipo , Ligação Proteica , Pele/patologia , Proteínas rab de Ligação ao GTP/química , proteínas de unión al GTP Rab7
16.
Cells ; 9(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326435

RESUMO

Mitochondrial dysfunction and systemic inflammation are major factors in the development of sarcopenia, but the molecular determinants linking the two mechanisms are only partially understood. The study of extracellular vesicle (EV) trafficking may provide insights into this relationship. Circulating small EVs (sEVs) from serum of 11 older adults with physical frailty and sarcopenia (PF&S) and 10 controls were purified and characterized. Protein levels of three tetraspanins (CD9, CD63, and CD81) and selected mitochondrial markers, including adenosine triphosphate 5A (ATP5A), mitochondrial cytochrome C oxidase subunit I (MTCOI), nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit B8 (NDUFB8), NADH:ubiquinone oxidoreductase subunit S3 (NDUFS3), succinate dehydrogenase complex iron sulfur subunit B (SDHB), and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2) were quantified by Western immunoblotting. Participants with PF&S showed higher levels of circulating sEVs relative to controls. Protein levels of CD9 and CD63 were lower in the sEV fraction of PF&S older adults, while CD81 was unvaried between groups. In addition, circulating sEVs from PF&S participants had lower amounts of ATP5A, NDUFS3, and SDHB. No signal was detected for MTCOI, NDUFB8, or UQCRC2 in either participant group. Our findings indicate that, in spite of increased sEV secretion, lower amounts of mitochondrial components are discarded through EV in older adults with PF&S. In-depth analysis of EV trafficking might open new venues for biomarker discovery and treatment development for PF&S.


Assuntos
Vesículas Extracelulares/metabolismo , Fragilidade/complicações , Fragilidade/metabolismo , Mitocôndrias/metabolismo , Sarcopenia/complicações , Sarcopenia/metabolismo , Idoso , Citosol/metabolismo , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fragilidade/sangue , Humanos , Masculino , Sarcopenia/sangue
17.
Cell Signal ; 71: 109597, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173369

RESUMO

Impaired lysosomal activity, which results in defective protein processing, waste accumulation, and protein aggregation, is implicated in a number of disease pathologies. Acidification of lysosomes is a crucial process required for lysosome function. Previously we showed that inhibition of glycogen synthase kinase-3 (GSK-3) enhanced lysosomal acidification in both normal and pathological conditions. However, how GSK-3 integrates into the lysosome networking is unknown. Here we show that inhibition of mTORC1 and increased autophagic activity are downstream to GSK-3 inhibition and contribute to lysosomal acidification. Strikingly, lysosomal acidification is also restored by GSK-3 inhibition in the absence of functional autophagy, and, independently of mTORC1. This is facilitated by increased endocytic traffic: We show that GSK-3 inhibition enhanced material internalization, increased recruitment of active Rab5 into endosomes, and increased Rab7/RILP clustering into lysosomes, all processes required for late endosome maturation. Consistently, in cells defective in endocytic traffic caused by either constitutively active Rab5, or, deletion of the Niemann-Pick C1 protein, GSK-3 inhibition could not restore lysosomal acidification. Finally we found that the tuberous sclerosis complex, TSC, is required for lysosomal acidification and is activated by GSK-3 inhibition. Thus, the GSK-3/TSC axis regulates lysosomal acidification via both the autophagic and endocytic pathways. Our study provides new insights into the therapeutic potential of GSK-3 inhibitors in treating pathological conditions associated with impaired cellular clearance.


Assuntos
Ácidos/metabolismo , Autofagia , Endocitose , Quinase 3 da Glicogênio Sintase/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Animais , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
18.
J Clin Med ; 9(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059608

RESUMO

Systemic inflammation and mitochondrial dysfunction are involved in neurodegeneration in Parkinson's disease (PD). Extracellular vesicle (EV) trafficking may link inflammation and mitochondrial dysfunction. In the present study, circulating small EVs (sEVs) from 16 older adults with PD and 12 non-PD controls were purified and characterized. A panel of serum inflammatory biomolecules was measured by multiplex immunoassay. Protein levels of three tetraspanins (CD9, CD63, and CD81) and selected mitochondrial markers (adenosine triphosphate 5A (ATP5A), mitochondrial cytochrome C oxidase subunit I (MTCOI), nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit B8 (NDUFB8), NADH:ubiquinone oxidoreductase subunit S3 (NDUFS3), succinate dehydrogenase complex iron sulfur subunit B (SDHB), and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2)) were quantified in purified sEVs by immunoblotting. Relative to controls, PD participants showed a greater amount of circulating sEVs. Levels of CD9 and CD63 were lower in the sEV fraction of PD participants, whereas those of CD81 were similar between groups. Lower levels of ATP5A, NDUFS3, and SDHB were detected in sEVs from PD participants. No signal was retrieved for UQCRC2, MTCOI, or NDUFB8 in either participant group. To identify a molecular signature in circulating sEVs in relationship to systemic inflammation, a low level-fused (multi-platform) partial least squares discriminant analysis was applied. The model correctly classified 94.2% ± 6.1% PD participants and 66.7% ± 5.4% controls, and identified seven biomolecules as relevant (CD9, NDUFS3, C-reactive protein, fibroblast growth factor 21, interleukin 9, macrophage inflammatory protein 1ß, and tumor necrosis factor alpha). In conclusion, a mitochondrial signature was identified in circulating sEVs from older adults with PD, in association with a specific inflammatory profile. In-depth characterization of sEV trafficking may allow identifying new biomarkers for PD and possible targets for personalized interventions.

19.
Cancers (Basel) ; 11(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374919

RESUMO

RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.

20.
J Colloid Interface Sci ; 553: 390-401, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228753

RESUMO

A perylene bisimide (PBI) derivative was utilized as photosensitizer for photodynamic therapy (PDT) applications, due to its high efficiency in singlet oxygen generation upon photoexcitation. It was immobilized onto a hydrophobized solid support, by means of the Langmuir-Schaefer (LS) technique, to achieve a preliminary medical device able to induce death of cancer cells in vitro. First, PBI derivative solutions, at two different concentrations (4.2 × 10-5 and 1.5 × 10-4 M) were chosen, based on the different PBI aggregation state, to be spread onto a water subphase in a Langmuir trough. Physico-chemical and morphological characterizations of the floating films were performed. Then the floating layers were transferred onto quartz substrates. The resulting multilayer LS films were characterized by spectroscopic measurements showing that the photochemical properties of the PBI derivative were well preserved even when immobilized. The LS film that exhibited the highest efficiency in the singlet oxygen production under light excitation was assessed in in vitro tests on human cervical carcinoma C13 cell line and the photo-toxicity was measured. This study revealed absence of cytotoxicity in dark conditions and a high photo-cytotoxicity toward cancer cells, making it a promising photoactive device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA