Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 161: 213887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735199

RESUMO

Critical size bone defects cannot heal without aid and current clinical approaches exhibit some limitations, underling the need for novel solutions. Silk fibroin, derived from silkworms, is widely utilized in tissue engineering and regenerative medicine due to its remarkable properties, making it a promising candidate for bone tissue regeneration in vitro and in vivo. However, the clinical translation of silk-based materials requires refinements in 3D architecture, stability, and biomechanical properties. In earlier research, improved mechanical resistance and stability of chemically crosslinked methacrylate silk fibroin (Sil-Ma) sponges over physically crosslinked counterparts were highlighted. Furthermore, the influence of photo-initiator and surfactant concentrations on silk properties was investigated. However, the characterization of sponges with Sil-Ma solution concentrations above 10 % (w/V) was hindered by production optimization challenges, with only cell viability assessed. This study focuses on the evaluation of methacrylate sponges' suitability as temporal bone tissue regeneration scaffolds. Sil-Ma sponge fabrication at a fixed concentration of 20 % (w/V) was optimized and the impact of photo-initiator (LAP) concentrations and surfactant (Tween 80) presence/absence was studied. Their effects on pore formation, silk secondary structure, mechanical properties, and osteogenic differentiation of hBM-MSCs were investigated. We demonstrated that, by tuning silk sponges' composition, the optimal combination boosted osteogenic gene expression, offering a strategy to tailor biomechanical properties for effective bone regeneration. Utilizing Design of Experiment (DoE), correlations between sponge composition, porosity, and mechanical properties are established, guiding tailored material outcomes. Additionally, correlation matrices elucidate the microstructure's influence on gene expressions, providing insights for personalized approaches in bone tissue regeneration.


Assuntos
Regeneração Óssea , Fibroínas , Tensoativos , Engenharia Tecidual , Alicerces Teciduais , Fibroínas/química , Alicerces Teciduais/química , Tensoativos/química , Animais , Engenharia Tecidual/métodos , Regeneração Óssea/efeitos dos fármacos , Humanos , Osso e Ossos/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Materiais Biocompatíveis/química , Porosidade
2.
Gels ; 9(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888374

RESUMO

Bioengineered hydrogels represent physiologically relevant platforms for cell behaviour studies in the tissue engineering and regenerative medicine fields, as well as in in vitro disease models. Hyaluronic acid (HA) is an ideal platform since it is a natural biocompatible polymer that is widely used to study cellular crosstalk, cell adhesion and cell proliferation, and is one of the major components of the extracellular matrix (ECM). We synthesised chemically modified HA with photo-crosslinkable methacrylated groups (HA-MA) in aqueous solutions and in strictly monitored pH and temperature conditions to obtain hydrogels with controlled bulk properties. The physical and chemical properties of the different HA-MA hydrogels were investigated via rheological studies, mechanical testing and scanning electron microscopy (SEM) imaging, which allowed us to determine the optimal biomechanical properties and develop a biocompatible scaffold. The morphological evolution processes and proliferation rates of glioblastoma cells (U251-MG) cultured on HA-MA surfaces were evaluated by comparing 2D structures with 3D structures, showing that the change in dimensionality impacted cell functions and interactions. The cell viability assays and evaluation of mitochondrial metabolism showed that the hydrogels did not interfere with cell survival. In addition, morphological studies provided evidence of cell-matrix interactions that promoted cell budding from the spheroids and the invasiveness in the surrounding environment.

3.
Water Res ; 219: 118567, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580392

RESUMO

This study represents the first attempt to investigate selected estrogenic compounds that include 17α-ethynylestradiol (EE2), 17ß-estradiol (E2) bisphenol A (BPA), and bisphenol AF (BPAF) along the drinkable water, from river-to-tap, and wastewater, from effluent-to-treated wastewater, treatment processes of the Hamilton City Council and the monitoring of the freshwater, from source-to-outfall, of the Waikato River in New Zealand. This was accomplished by the adoption of a novel combination of diffusive gradients in thin films (DGTs) in-situ passive sampling coupled with high-performance liquid chromatography/mass spectrometry analysis (HPLC/MS) and the Yeast Estrogen Screen (YES). Estradiol equivalency quantities, integrated in time, were evaluated theoretically (cEEQ) by DGT-HPLC/MS and experimentally (EEQ) by DGT-YES assay. cEEQ and EEQ highlighted that primary treatments are not suitable for estrogens and bisphenolic plastics removal both at drinkable and wastewater treatment plants in Hamilton where they worsen the water quality in terms of estrogenicity making these pollutants more available in the water phase. All downstream sites monitored along the Waikato River showed higher cEEQ and EEQ, moreover the Waikato River water quality showed a moderate worsening moving from Taupo (source) to Tuakau (outfall). The most polluted sites were downstream of Hamilton city and Huntly township wastewater treatment plants that serve the main conurbations in the area. cEEQ and EEQ generally showed good agreement at low concentrations but differed substantially at more polluted sites where cEEQ consistently underestimated estrogenic potency, possibly due to DGT accumulation of estrogenic compounds not quantified by HPLC/MS.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Estradiol/análise , Estrogênios/análise , Estrona/análise , Nova Zelândia , Saccharomyces cerevisiae , Águas Residuárias/química , Poluentes Químicos da Água/análise
4.
J Tissue Eng Regen Med ; 15(4): 375-387, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533202

RESUMO

Articular hyaline cartilage is an extremely hydrated, not vascularized tissue with a low-cell density. The damage of this tissue can occur after injuries or gradual stress and tears (osteoarthritis), minor damages can be self-healed in several weeks, but major injuries may eventually require surgery. In fact, in this case, because of nature of the cartilage (the absence of cells and vascularization) it is difficult to expect its natural regeneration in a reasonable amount of time. In recent years, cell therapy, in which cells are directly transplanted, has attracted attention. In this study, a scaffold for implanting chondrocytes was prepared. The scaffold was made as a sponge using the eggshell membrane and agarose. The eggshell membrane is structurally similar to the extracellular matrix and nontoxic due to its many collagen components and has good biocompatibility and biodegradability. However, scaffolds made of collagen only has poor mechanical properties. For this reason, the disulfide bond of collagen extracted from the insoluble eggshell membrane was cut, converted into water-soluble, and then mixed with agarose to prepare a scaffold. Agarose is capable of controlling mechanical properties, has excellent biocompatibility, and is suitable for forming a hydrogel having a three-dimensional porosity. The scaffold was examined for Fourier-transform infrared, mechanical properties, biodegradability, and biocompatibility. In in vitro experiment, cytotoxicity, cell proliferation, and messenger RNA expression were investigated. The study demonstrated that the agarose/eggshell membrane scaffold can be used for chondrocyte transplantation.


Assuntos
Cartilagem Articular/fisiologia , Casca de Ovo/química , Sefarose/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Morte Celular/genética , Proliferação de Células/genética , Forma Celular/genética , Sobrevivência Celular/genética , Galinhas , Força Compressiva , Regulação da Expressão Gênica , Porosidade , Coelhos , Regeneração/genética , Solubilidade
5.
Sensors (Basel) ; 21(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503884

RESUMO

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.

6.
ACS Appl Bio Mater ; 4(2): 1900-1911, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014459

RESUMO

Bone is the rigid tissue that constitutes the skeleton. The material for bone regeneration has to provide the mechanical stability by maintaining the mechanical loads both in the rest conditions and during the body movements. Bone is dynamic tissue constantly reshaped by the action of cells (osteoblasts and osteoclasts). This activity is normally enough to heal bone injuries; however, in several conditions, when bone is subjected to fatal damages, self-renewal is difficult, if not even impossible, and a medical treatment is required. The transplantation of a biomaterial is one of the common surgical procedures to overcome critical injuries. In this study, we exploited the effect of the use of different sources of demineralized bone powder (DBP) in combination with gellan gum (GG) to form a GG-DBP hydrogel scaffold with the purpose of regenerating the bone tissue. DBP was extracted from the femurs of two typologies of Gallus gallus domesticus (the Yeonsan Ogye, a traditional and rare black chicken from Korea, and the Cornish cross, the most common breeds for industrial meat production) and the Pekin duck. The composite scaffold has been tested both in vitro and in vivo. In vitro studies using rat bone marrow-derived mesenchymal stem cells (rBMSCs) confirmed the cellular suitability of bone-specific gene expression for seeded GG-DBP scaffolds, differentiation capacity, and marked upregulation. The scaffold containing a DBP derived from the Yeonsan Ogye (YO) bone showed higher levels of cell proliferation and osteogenic differentiation in comparison with the scaffold with the DBP obtained from the other studied sources. These results have been related with the higher amount of melanin, studied by fluorescence, of the YO DBP compared to Cornish cross and Pekin duck. Overall, this study clearly shows the use of YO DBP as a promising material in bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/farmacologia , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Coelhos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA