Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124283, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823546

RESUMO

Alaska contains over 600 formerly used defense (FUD) sites, many of which serve as point sources of pollution. These sites are often co-located with rural communities that depend upon traditional subsistence foods, especially lipid-rich animals that bioaccumulate and biomagnify persistent organic pollutants (POPs). Many POPs are carcinogenic and endocrine-disrupting compounds that are associated with adverse health outcomes. Therefore, elevated exposure to POPs from point sources of pollution may contribute to disproportionate incidence of disease in arctic communities. We investigated PCB concentrations and the health implications of POP exposure in sentinel fishes collected near the Northeast Cape FUD site on Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq residents are almost exclusively Yupik and rely on subsistence foods. At the request of the Sivuqaq community, we examined differential gene expression and developmental pathologies associated with exposure to POPs originating at the Northeast Cape FUD site. We found significantly higher levels of PCBs in Alaska blackfish (Dallia pectoralis) collected from contaminated sites downstream of the FUD site compared to fish collected from upstream reference sites. We compared transcriptomic profiles and histopathologies of these same blackfish. Blackfish from contaminated sites overexpressed genes involved in ribosomal and FoxO signaling pathways compared to blackfish from reference sites. Contaminated blackfish also had significantly fewer thyroid follicles and smaller pigmented macrophage aggregates. Conversely, we found that ninespine stickleback (Pungitius pungitius) from contaminated sites exhibited thyroid follicle hyperplasia. Despite our previous research reporting transcriptomic and endocrine differences in stickleback from contaminated vs. reference sites, we did not find significant differences in kidney or gonadal histomorphologies. Our results demonstrate that contaminants from the Northeast Cape FUD site are associated with altered gene expression and thyroid development in native fishes. These results are consistent with our prior work demonstrating disruption of the thyroid hormone axis in Sivuqaq residents.

2.
Integr Comp Biol ; 62(2): 152-163, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35671163

RESUMO

Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back 3-5 years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data. Cortisol, corticosterone, testosterone, and estradiol concentrations were determined via enzyme immunoassay using subsamples of each baleen plate at 2 cm intervals. There were no significant differences in cortisol or corticosterone during pregnancy when compared to non-pregnancy (inter-calving interval), but there were significant differences between the two whales in average glucocorticoid concentrations, with the younger whale showing higher values overall. For testosterone, levels for the younger female peaked at parturition in one pregnancy, but also had spikes during non-pregnancy. The older female had three large spikes in testosterone, one of which was associated with parturition. Estradiol had large fluctuations in both whales but had generally lower concentrations during non-pregnancy than during pregnancy. There were peaks in estradiol before each pregnancy, possibly coinciding with ovulation, and peaks coinciding with the month of parturition. Both estradiol and testosterone could be useful for determining ovulation or impending birth. Using baleen to investigate retrospective steroid hormone profiles can be used for elucidating long-term patterns of physiological change during gestation. LAY SUMMARY: Case studies of two pregnant humpback whales whose hormones were analyzed in baleen may illuminate when humpback whales ovulate, gestate, and give birth. These physiological metrics could assist in accurate population growth assessments and conservation of the species. This study shows that baleen hormone analysis can be a useful tool for understanding whale reproductive physiology.


Assuntos
Jubarte , Animais , Corticosterona , Estradiol , Feminino , Jubarte/fisiologia , Hidrocortisona , Reprodução/fisiologia , Estudos Retrospectivos , Testosterona
3.
Gen Comp Endocrinol ; 325: 114053, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580688

RESUMO

The short-beaked echidna (Tachyglossus aculeatus) is a monotreme endemic to Australia and New Guinea, and is the most widespread native mammal in Australia. Despite its abundance, there are considerable gaps in our understanding of echidna life history such as reproductive cycles in both sexes, patterns of stress physiology, and possible seasonal changes in metabolism. Slow-growing integumentary sample types comprised of keratin (hair, claw, etc.) have been used in other wildlife to assess these questions via analysis of longitudinal patterns in steroid and thyroid hormones that are deposited in these tissues as they grow. Hairs and spines comprise the pelage of echidnas, the spines being keratinized structures homologous to hair. Thus, echidna spines could be a viable sample type for hormone analysis contributing to a better understanding of the biology of echidnas. The aim of this work was to determine whether steroid hormones are detectable in echidna spines, to perform assay validations, and to establish a protocol for extracting and quantifying hormones in echidna spines using commercially available assay kits. We also inspected cross-sectioned spines using light and electron microscopy for any evidence of annual growth markers that might enable inferences about spine growth rate. Corticosterone, progesterone, estradiol, and testosterone were detectable in all samples, and echidna spine extract passed standard assay validations (parallelism and accuracy), indicating that commercially available assay kits can quantify hormones accurately in this sample type. No visible growth marks were identified in the spines and thus spine growth rate is currently unknown. Echidna spines show promise as a novel matrix from which hormones can be quantified; next steps should involve determination of spine annual growth rate, possible seasonal changes in growth rate, and persistence of spines over time in order to perform physiological validations, i.e., relationship between physiological status and hormone concentrations in spines.


Assuntos
Tachyglossidae , Animais , Animais Selvagens , Enguias , Feminino , Cabelo , Hormônios , Masculino
4.
Sci Total Environ ; 826: 154067, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35217049

RESUMO

Environmental pollution causes adverse health effects in many organisms and contributes to health disparities for Arctic communities that depend on subsistence foods, including the Yupik residents of Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq's proximity to Russia made it a strategic location for U.S. military defense sites during the Cold War. Two radar surveillance stations were installed on Sivuqaq, including at the Northeast Cape. High levels of persistent organic pollutants and toxic metals continue to leach from the Northeast Cape formerly used defense (FUD) site despite remediation efforts. We quantified total mercury (Hg) and polychlorinated biphenyl (PCB) concentrations, and carbon and nitrogen stable isotope signatures, in skin and muscle samples from Dolly Varden (Salvelinus malma), an important subsistence species. We found that Hg and PCB concentrations significantly differed across locations, with the highest concentrations found in fish collected near the FUD site. We found that 89% of fish collected from near the FUD site had Hg concentrations that exceeded the U.S. Environmental Protection Agency's (EPA) unlimited Hg-contaminated fish consumption screening level for subsistence fishers (0.049 µg/g). All fish sampled near the FUD site exceeded the EPA's PCB guidelines for cancer risk for unrestricted human consumption (0.0015 µg/g ww). Both Hg and PCB concentrations had a significant negative correlation with δ13C when sites receiving input from the FUD site were included in the analysis, but these relationships were insignificant when input sites were excluded. δ15N had a significant negative correlation with Hg concentration, but not with PCB concentration. These results suggest that the Northeast Cape FUD site remains a point source of Hg and PCB pollution and contributes to higher concentrations in resident fish, including subsistence species. Moreover, elevated Hg and PCB levels in fish near the FUD site may pose a health risk for Sivuqaq residents.


Assuntos
Mercúrio , Bifenilos Policlorados , Poluentes Químicos da Água , Alaska , Animais , Monitoramento Ambiental , Mercúrio/análise , Bifenilos Policlorados/análise , Truta , Poluentes Químicos da Água/análise
5.
J Comp Physiol B ; 192(1): 127-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379176

RESUMO

Sampling blood for endocrine analysis from some species may not be practical or ethical. Quantification of hormones extracted from nontypical sample types, such as keratinized tissues, offers a less invasive alternative to the traditional collection and analysis of blood. Here, we aimed to validate assays by using parallelism and accuracy tests for quantification of testosterone, corticosterone, progesterone, and triiodothyronine (T3) in shed skins of tegu lizards. We assessed whether hormone content of sheds varied across one year similar to what was previously detected in plasma samples. In addition, we aimed to identify the phase relationship between hormone levels of shed skin and plasma levels obtained from the same animals. High frequency of shedding occurred during the active season for tegus (spring/summer), while shedding ceased during hibernation (winter). All hormones measured in shed skins exhibited seasonal changes in concentration. Levels of testosterone in shed skins of male tegus correlated positively with plasma testosterone levels, while corticosterone in both males and females exhibited an inverse relationship between sample types for the same month of collection. An inverse relationship was found when accounting for a lag time of 3 and 4 months between sheds and plasma testosterone. These results indicate that endocrine content of sheds may be confounded by factors (i.e., seasons, environmental temperature, thermoregulatory behavior, among others) that affect frequency of molting, skin blood perfusion, and therefore hormone transfer from the bloodstream and deposition in sheds of squamates.


Assuntos
Lagartos , Animais , Corticosterona , Feminino , Lagartos/fisiologia , Masculino , Progesterona , Estações do Ano , Hormônios Tireóideos
6.
Gen Comp Endocrinol ; 285: 113295, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580883

RESUMO

Life history transitions and hormones are known to interact and influence many aspects of animal physiology and behavior. The South-American tegu lizard (Salvator merianae) exhibits a profound seasonal shift in metabolism and body temperature, characterized by high daily activity during warmer months, including reproductive endothermy in spring, and metabolic suppression during hibernation in winter. This makes S. merianae an interesting subject for studies of interrelationships between endocrinology and seasonal changes in physiology/behavior. We investigated how plasma concentrations of hormones involved in regulation of energy metabolism (thyroid hormones T4 and T3; corticosterone) and reproduction (testosterone in males and estrogen/progesterone in females) correlate with activity and body temperature (Tb) across the annual cycle of captive held S. merianae in semi-natural conditions. In our initial model, thyroid hormones and corticosterone showed a positive relationship with activity and Tb with independent of sex: T3 positively correlated with activity and Tb, while T4 and corticosterone correlated positively with changes in Tb only. This suggests that thyroid hormones and glucocorticoids may be involved in metabolic transitions of annual cycle events. When accounting for sex-steroid hormones, our sex separated models showed a positive relationship between testosterone and Tb in males and progesterone and activity in females. Coupling seasonal endocrine measures with activity and Tb may expand our understanding of the relationship between animal's physiology and its environment. Manipulative experiments are required in order to unveil the directionality of influences existing among abiotic factors and the hormonal signaling of annual cyclicity in physiology/behavior.


Assuntos
Temperatura Corporal , Hormônios/metabolismo , Lagartos/fisiologia , Animais , Corticosterona/sangue , Sistema Endócrino/metabolismo , Metabolismo Energético , Feminino , Glucocorticoides/metabolismo , Masculino , Progesterona/metabolismo , Estações do Ano , Testosterona/metabolismo , Hormônios Tireóideos/metabolismo
7.
J Biol Rhythms ; 32(3): 246-256, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452286

RESUMO

Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (< 20 h) arousal intervals when metabolism and body temperature (Tb) return to normal levels. Here, we used immunohistochemistry to measure the expression of daily or circadian rhythms of the protein products of 3 circadian clock genes, PER1, PER2, BMAL1, and the neural activity marker c-FOS in the suprachiasmatic nucleus (SCN) of arctic ground squirrels before, during, and after the first torpor bout of hibernation. Before torpor, while under 12:12-h light:dark conditions, animals showed significant daily rhythms in their Tb, as well as in protein expression levels of PER1 and PER2, but not BMAL1. Upon entering first torpor (Tb < 30°C), animals were moved into constant darkness. When sampled at 6-h intervals-beginning 24 h after the last light out, with Tb 3°C to 4°C-there were no circadian oscillations in PER1, PER2, or c-FOS expression. Sampling across 24 h during the first spontaneous arousal interval, c-FOS expression was elevated only when Tb reached 20°C and PER1 and PER2 expression did not show any Tb- or time-dependent changes. These results suggest that the central circadian clock might have stopped functioning during hibernation in this species, and the timing of arousal from torpor in arctic ground squirrels is unlikely to be controlled by the circadian clock within the SCN.


Assuntos
Relógios Circadianos/genética , Hibernação , Sciuridae/genética , Sciuridae/fisiologia , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Regiões Árticas , Temperatura Corporal , Ritmo Circadiano/fisiologia , Hibernação/genética , Luz , Proteínas Circadianas Period/genética , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/genética , Estações do Ano
8.
Gen Comp Endocrinol ; 198: 59-65, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24406512

RESUMO

From the 1970s to the 1990s, the breeding population of spectacled eiders (Somateria fischeri) in western Alaska declined by 96%, which led to the listing of this species as threatened under the Endangered Species Act in 1993. Since then, the population has stabilized, but has not recovered to pre-decline numbers. While little is known about reproductive endocrinology in spectacled eiders, in other avian species, estrogen and testosterone are known to initiate and modulate various reproductive processes including yolk protein synthesis, reproductive behaviors and secondary sex characteristics. Measurement of the metabolites of estrogen and testosterone (EM and TM, respectively) in excrement reflect circulating hormone concentrations and provide a non-invasive method to monitor reproductive physiology. We measured concentrations of excreted EM in captive females and TM in males to (1) determine the efficacy of commercially available radioimmunoassay kits to detect EM and TM, (2) describe annual profiles of EM and TM concentrations, and (3) define the reproductive season of captive spectacled eiders using endocrine status. Excrement samples were collected from captive female and male spectacled eiders three times per week throughout 1 year. Female EM and male TM levels were quantified using radioimmunoassay. Mean female EM profile exhibited values exceeding the threshold for "peak" values (EM>193.3 ng/g) from mid-February to early July, and again in September. Additionally, the highest average concentrations of EM were seen in March, May and September. Elevated TM concentrations occurred in mid March, mid May and late June. These data suggest that levels of excreted sex steroids reflect patterns predicted by breeding landmarks in the annual cycle and will assist in field monitoring and captive breeding programs for spectacled eiders.


Assuntos
Aves/fisiologia , Cruzamento , Estrogênios/análise , Fezes/química , Testosterona/análise , Alaska , Animais , Cromatografia Líquida de Alta Pressão , Meio Ambiente , Estrogênios/química , Feminino , Masculino , Radioimunoensaio , Estações do Ano , Fatores Sexuais , Testosterona/química
9.
J Neurochem ; 102(6): 1713-1726, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17555547

RESUMO

Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.


Assuntos
Metabolismo Basal/fisiologia , Isquemia Encefálica/metabolismo , Sistema Nervoso Central/fisiologia , Metabolismo Energético/fisiologia , Hibernação/fisiologia , Mamíferos/fisiologia , Animais , Vias Autônomas/anatomia & histologia , Vias Autônomas/fisiologia , Metabolismo Basal/efeitos dos fármacos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Hibernação/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA