Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 213(2): 161-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36599311

RESUMO

The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.


Assuntos
Células Epiteliais , Optogenética , Mitose , Transdução de Sinais
2.
EMBO J ; 41(24): e111021, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993232

RESUMO

Individual cells within de novo polarising tubes and cavities must integrate their forming apical domains into a centralised apical membrane initiation site (AMIS). This is necessary to enable organised lumen formation within multi-cellular tissue. Despite the well-documented importance of cell division in localising the AMIS, we have found a division-independent mechanism of AMIS localisation that relies instead on Cadherin-mediated cell-cell adhesion. Our study of de novo polarising mouse embryonic stem cells (mESCs) cultured in 3D suggests that cell-cell adhesion localises apical proteins such as PAR-6 to a centralised AMIS. Unexpectedly, we also found that mESC clusters lacking functional E-cadherin still formed a lumen-like cavity in the absence of AMIS localisation but did so at a later stage of development via a "closure" mechanism, instead of via hollowing. This work suggests that there are two, interrelated mechanisms of apical polarity localisation: cell adhesion and cell division. Alignment of these mechanisms in space allows for redundancy in the system and ensures the development of a coherent epithelial structure within a growing organ.


Assuntos
Caderinas , Polaridade Celular , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Adesão Celular , Células Epiteliais/metabolismo
3.
Nat Rev Mol Cell Biol ; 23(8): 559-577, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440694

RESUMO

Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.


Assuntos
Polaridade Celular , Proteínas de Drosophila , Animais , Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Células Epiteliais , Epitélio/metabolismo , Morfogênese
4.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361092

RESUMO

Using the zebrafish neural tube as a model, we uncover the in vivo mechanisms allowing the generation of two opposing apical epithelial surfaces within the centre of an initially unpolarised, solid organ. We show that Mpp5a and Rab11a play a dual role in coordinating the generation of ipsilateral junctional belts whilst simultaneously releasing contralateral adhesions across the centre of the tissue. We show that Mpp5a- and Rab11a-mediated resolution of cell-cell adhesions are both necessary for midline lumen opening and contribute to later maintenance of epithelial organisation. We propose that these roles for both Mpp5a and Rab11a operate through the transmembrane protein Crumbs. In light of a recent conflicting publication, we also clarify that the junction-remodelling role of Mpp5a is not specific to dividing cells.


Assuntos
Guanilato Ciclase/genética , Morfogênese/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/genética , Animais , Polaridade Celular/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Junções Intercelulares/genética , Proteínas de Membrana , Tubo Neural/crescimento & desenvolvimento , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA