Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38539894

RESUMO

The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.

2.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37773633

RESUMO

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Temozolomida/uso terapêutico
3.
Antioxidants (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001858

RESUMO

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.

4.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759986

RESUMO

Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.

5.
Adv Redox Res ; 92023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37692975

RESUMO

Nitric oxide (NO•) generated by nitric oxide synthases is involved in many physiological and pathophysiological processes. However, non-enzymatic formation of NO• also occurs in vivo. Here we investigated the production of NO• from nitrite, as facilitated by ascorbate, over the pH range of 2.4-7.4. Using a nitric oxide electrode, we observed at low pH a rapid generation of NO• from nitrite and ascorbate that slows with increasing pH. The formation of NO• was confirmed by its reaction with oxyhemoglobin. In the ascorbate/nitrite system a steady-state level of NO• was achieved, suggesting that a futile redox cycle of nitrite-reduction by ascorbate and NO•-oxidation by dioxygen was established. However, at pH-values of around 7 and greater, the direct reduction of nitrite by ascorbate is very slow; thus, this route to the non-enzymatic production of NO• is not likely to be significant process in vivo in environments having a pH around 7.4. The production of nitric oxide by nitrite and ascorbate would be important only in areas of lower pH, e.g. stomach/digestive system, sites of inflammation, and areas of hypoxia such as tumor tissue. In patients receiving very large doses of ascorbate delivered by intravenous infusion, plasma levels of ascorbate on the order of 20 - 30 mM can be achieved. After infusion, levels of nitrate and nitrite in plasma were unchanged. Thus, in blood and tissue that maintain a pH of about 7.4, the reduction of nitrite to nitric oxide by ascorbate appears to be insignificant, even at very large, pharmacological levels of ascorbate.

6.
Free Radic Biol Med ; 204: 108-117, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137343

RESUMO

Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.


Assuntos
Antineoplásicos , Ácido Ascórbico , Mitocôndrias , Dinâmica Mitocondrial , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Análise de Sobrevida , Feminino
7.
Nucleic Acids Res ; 51(10): 5056-5072, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37078607

RESUMO

Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.


Assuntos
Antioxidantes , Neoplasias , Humanos , Peróxido de Hidrogênio/toxicidade , Mutação , Oxirredução , Neoplasias/genética , Oxidantes
8.
Sci Rep ; 12(1): 22521, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581766

RESUMO

At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Antioxidantes/uso terapêutico , Antineoplásicos/uso terapêutico , Trifosfato de Adenosina
9.
Pancreas ; 51(6): 684-693, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099493

RESUMO

OBJECTIVES: Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS: Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS: P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS: The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Fluoruracila , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paclitaxel , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
10.
Redox Biol ; 53: 102318, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525024

RESUMO

PURPOSE: Platinum-based chemotherapy with or without immunotherapy is the mainstay of treatment for advanced stage non-small cell lung cancer (NSCLC) lacking a molecular driver alteration. Pre-clinical studies have reported that pharmacological ascorbate (P-AscH-) enhances NSCLC response to platinum-based therapy. We conducted a phase II clinical trial combining P-AscH- with carboplatin-paclitaxel chemotherapy. EXPERIMENTAL DESIGN: Chemotherapy naïve advanced stage NSCLC patients received 75 g ascorbate twice per week intravenously with carboplatin and paclitaxel every three weeks for four cycles. The primary endpoint was to improve tumor response per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 compared to the historical control of 20%. The trial was conducted as an optimal Simon's two-stage design. Blood samples were collected for exploratory analyses. RESULTS: The study enrolled 38 patients and met its primary endpoint with an objective response rate of 34.2% (p = 0.03). All were confirmed partial responses (cPR). The disease control rate was 84.2% (stable disease + cPR). Median progression-free and overall survival were 5.7 months and 12.8 months, respectively. Treatment-related adverse events (TRAE) included one grade 5 (neutropenic fever) and five grade 4 events (cytopenias). Cytokine and chemokine data suggest that the combination elicits an immune response. Immunophenotyping of peripheral blood mononuclear cells demonstrated an increase in effector CD8 T-cells in patients with a progression-free survival (PFS) ≥ 6 months. CONCLUSIONS: The addition of P-AscH- to platinum-based chemotherapy improved tumor response in advanced stage NSCLC. P-AscH- appears to alter the host immune response and needs further investigation as a potential adjuvant to immunotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/uso terapêutico , Platina/uso terapêutico
11.
J Radiat Res ; 63(3): 378-384, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35301531

RESUMO

Ferumoxytol (FMX) is an iron oxide nanoparticle that is FDA approved for the treatment of iron deficiency anemia. FMX contains an Fe3O4 core. Currently, the redox chemistry of Fe3O4 nanoparticles remains relatively unexplored. FMX has recently gained interest as an anti-cancer agent. Ionizing radiation (IR) is a treatment modality employed to treat several types of cancer. Utilizing electron paramagnetic resonance (EPR) spectroscopy, we found that the products produced from the radiolysis of water can oxidize the Fe3O4 core of FMX. Because of the limited diffusion of the HO2• and HO• produced, these highly oxidizing species have little direct effect on FMX oxidation. We have determined that H2O2 is the primary oxidant of FMX. In the presence of labile Fe2+, we found that reducing species generated from the radiolysis of H2O are able to reduce the Fe3+ sites of the Fe3O4 core. Importantly, we also have shown that IR stimulates the release of ferric iron from FMX. Because of its release of iron, FMX may serve as an adjuvant to enhance radiotherapy.


Assuntos
Óxido Ferroso-Férrico , Neoplasias , Espectroscopia de Ressonância de Spin Eletrônica , Óxido Ferroso-Férrico/química , Humanos , Peróxido de Hidrogênio , Ferro , Oxirredução , Radiação Ionizante
12.
J Leukoc Biol ; 112(3): 457-473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075692

RESUMO

Inflammatory agents, microbial products, or stromal factors pre-activate or prime neutrophils to respond to activating stimuli in a rapid and aggressive manner. Primed neutrophils exhibit enhanced chemotaxis, phagocytosis, and respiratory burst when stimulated by secondary activating stimuli. We previously reported that Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) mediates neutrophil effector functions such as increased superoxide generation, transepithelial migration, and chemotaxis. However, it is unclear whether TREM-1 is required for the process of priming itself or for primed responses to subsequent stimulation. To investigate this, we utilized in vitro and in vivo differentiated neutrophils that were primed with TNF-α and then stimulated with the particulate agonist, opsonized zymosan (OpZ). Bone marrow progenitors isolated from WT and Trem-1-/- mice were transduced with estrogen regulated Homeobox8 (ER-Hoxb8) fusion transcription factor and differentiated in vitro into neutrophils following estrogen depletion. The resulting neutrophils expressed high levels of TREM-1 and resembled mature in vivo differentiated neutrophils. The effects of priming on phagocytosis and oxidative burst were determined. Phagocytosis did not require TREM-1 and was not altered by priming. In contrast, priming significantly enhanced OpZ-induced oxygen consumption and superoxide production in WT but not Trem-1-/- neutrophils indicating that TREM-1 is required for primed oxidative burst. TREM-1-dependent effects were not mediated during the process of priming itself as priming enhanced degranulation, ICAM-1 shedding, and IL-1ß release to the same extent in WT and Trem-1-/- neutrophils. Thus, TREM-1 plays a critical role in primed phagocytic respiratory burst and mediates its effects following priming.


Assuntos
Explosão Respiratória , Superóxidos , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Zimosan/administração & dosagem
13.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639220

RESUMO

Interest in the use of pharmacological ascorbate as a treatment for cancer has increased considerably since it was introduced by Cameron and Pauling in the 1970s. Recently, pharmacological ascorbate has been used in preclinical and early-phase clinical trials as a selective radiation sensitizer in cancer. The results of these studies are promising. This review summarizes data on pharmacological ascorbate (1) as a safe and efficacious adjuvant to cancer therapy; (2) as a selective radiosensitizer of cancer via a mechanism involving hydrogen peroxide; and (3) as a radioprotector in normal tissues. Additionally, we present new data demonstrating the ability of pharmacological ascorbate to enhance radiation-induced DNA damage in glioblastoma cells, facilitating cancer cell death. We propose that pharmacological ascorbate may be a general radiosensitizer in cancer therapy and simultaneously a radioprotector of normal tissue.


Assuntos
Ácido Ascórbico/farmacologia , Peróxido de Hidrogênio/farmacologia , Neoplasias/radioterapia , Estresse Oxidativo/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Animais , Antioxidantes/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
14.
Redox Biol ; 46: 102073, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298465

RESUMO

The antioxidant function of the phospholipid hydroperoxide glutathione peroxidase (GPx4) is vital for the homeostasis of many cell types, from neoplastic cells to normal erythroid precursors. However, some functional proteins in erythroid precursors are lost during the development of red blood cells (RBCs); whether GPx4 is maintained as an active enzyme in mature RBCs has remained unclear. Our meta-analyses of existing RBC proteomics and metabolomics studies revealed the abundance of GPx4 to be correlated with lipid-anchored proteins. In addition, GPx4 anti-correlated with lyso-phospholipids and complement system proteins, further supporting the presence of active GPx4 in mature RBCs. To test the potential biological relevance of GPx4 in mature RBCs, we correlated the rate of hemolysis of human RBCs during storage with the abundance of GPx4 and other heritable RBC proteins. Of the molecules that anti-correlated with the rate of hemolysis of RBCs, proteins that mediate the cellular response to hydroperoxides, including GPx4, have the greatest enrichment. Western blotting further confirmed the presence of GPx4 antigenic protein in RBCs. Using an assay optimized to measure the activity of GPx4 in RBCs, we found GPx4 to be an active enzyme in mature RBCs, suggesting that GPx4 protects RBCs from hemolysis during blood bank storage.


Assuntos
Bancos de Sangue , Hemólise , Preservação de Sangue , Eritrócitos , Glutationa Peroxidase/genética , Humanos
15.
Antioxidants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923601

RESUMO

Pancreatic cancer cells (PDACs) are more susceptible to an oxidative insult than normal cells, resulting in greater cytotoxicity upon exposure to agents that increase pro-oxidant levels. Pharmacological ascorbate (P-AscH-), i.e., large amounts given intravenously (IV), generates significant fluxes of hydrogen peroxide (H2O2), resulting in the killing of PDACs but not normal cells. Recent studies have demonstrated that P-AscH- radio-sensitizes PDAC but is a radioprotector to normal cells and tissues. Several mechanisms have been hypothesized to explain the dual roles of P-AscH- in radiation-induced toxicity including the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), RelB, as well as changes in bioenergetic profiles. We have found that P-AscH- in conjunction with radiation increases Nrf2 in both cancer cells and normal cells. Although P-AscH- with radiation decreases RelB in cancer cells vs. normal cells, the knockout of RelB does not radio-sensitize PDACs. Cellular bioenergetic profiles demonstrate that P-AscH- with radiation increases the ATP demand/production rate (glycolytic and oxidative phosphorylation) in both PDACs and normal cells. Knocking out catalase results in P-AscH- radio-sensitization in PDACs. In a phase I trial where P-AscH- was included as an adjuvant to the standard of care, short-term survivors had higher catalase levels in tumor tissue, compared to long-term survivors. These data suggest that P-AscH- radio-sensitizes PDACs through increased peroxide flux. Catalase levels could be a possible indicator for how tumors will respond to P-AscH-.

16.
Free Radic Biol Med ; 165: 421-434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561488

RESUMO

Dihydroartemisinin (DHA) is an FDA-approved antimalarial drug that has been repurposed for cancer therapy because of its preferential antiproliferative effects on cancer versus normal cells. Mitochondria represent an attractive target for cancer therapy based on their regulatory role in proliferation and cell death. This study investigates whether DHA conjugated to innately fluorescent N-alkyl triphenylvinylpyridinium (TPVP) perturbs mitochondrial functions resulting in a differential toxicity of cancer versus normal cells. TPVP-DHA treatments resulted in a dose-dependent toxicity of human melanoma and pancreatic cancer cells, whereas normal human fibroblasts were resistant to this treatment. TPVP-DHA treatments resulted in a G1-delay of the cancer cell cycle, which was also associated with a significant inhibition of the mTOR-metabolic and ERK1/2-proliferative signaling pathways. TPVP-DHA treatments perturbed mitochondrial functions, which correlated with increases in mitochondrial fission. In summary, TPVP mediated mitochondrial targeting of DHA enhanced cancer cell toxicity by perturbing mitochondrial functions and morphology.


Assuntos
Antimaláricos , Artemisininas , Neoplasias , Antimaláricos/toxicidade , Apoptose , Artemisininas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mitocôndrias
17.
Redox Biol ; 38: 101804, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260088

RESUMO

Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate's oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH--induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned: pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool. Phantoms containing Fe3+ demonstrated detectable changes in T2* and QSM relaxation times relative to Fe2+ phantoms. Compared to pre-P-AscH-, GBM T2* and QSM imaging were significantly changed post-P-AscH- infusion consistent with conversion of Fe3+ to Fe2+. No significant changes in T2* or QSM were observed in normal brain tissue. There was moderate concordance between T2* and QSM changes in both progression free survival and overall survival. The GBM mouse model showed similar results with P-AscH- inducing greater changes in tumor labile iron pools compared to the normal tissue. CONCLUSIONS: T2* and QSM MR-imaging responses are consistent with P-AscH- reducing Fe3+ to Fe2+, selectively in GBM tumor volumes and represent a potential biomarker of response. This study is the first application using MR imaging in humans to measure P-AscH--induced changes in redox-active iron.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo , Oxirredução
18.
PLoS One ; 15(12): e0244540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378390

RESUMO

Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabolism that lead to malignancy that is non-responsive to current treatments. The current report demonstrates that triphenylphosphonium(TPP)-based lipophilic cations can be utilized to induce cytotoxicity in pre-clinical models of malignant melanoma by disrupting mitochondrial metabolism. In vitro experiments demonstrated that TPP-derivatives modified with aliphatic side chains accumulated in melanoma cell mitochondria; disrupted mitochondrial metabolism; led to increases in steady-state levels of reactive oxygen species; decreased total glutathione; increased the fraction of glutathione disulfide; and caused cell killing by a thiol-dependent process that could be rescued by N-acetylcysteine. Furthermore, TPP-derivative-induced melanoma toxicity was enhanced by glutathione depletion (using buthionine sulfoximine) as well as inhibition of thioredoxin reductase (using auranofin). In addition, there was a structure-activity relationship between the aliphatic side-chain length of TPP-derivatives (5-16 carbons), where longer carbon chains increased melanoma cell metabolic disruption and cell killing. In vivo bio-distribution experiments showed that intratumoral administration of a C14-TPP-derivative (12-carbon aliphatic chain), using a slow-release thermosensitive hydrogel as a delivery vehicle, localized the drug at the melanoma tumor site. There, it was observed to persist and decrease the growth rate of melanoma tumors. These results demonstrate that TPP-derivatives selectively induce thiol-dependent metabolic oxidative stress and cell killing in malignant melanoma and support the hypothesis that a hydrogel-based TPP-derivative delivery system could represent a therapeutic drug-delivery strategy for melanoma.


Assuntos
Auranofina/administração & dosagem , Butionina Sulfoximina/administração & dosagem , Melanoma/tratamento farmacológico , Mitocôndrias/metabolismo , Compostos Organofosforados/administração & dosagem , Animais , Auranofina/farmacologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Sinergismo Farmacológico , Feminino , Humanos , Hidrogéis/química , Melanoma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Metab ; 32(4): 561-574.e7, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027675

RESUMO

Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Campos Eletromagnéticos/efeitos adversos , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
20.
Free Radic Biol Med ; 156: 20-25, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32522584

RESUMO

Previous research has identified variation in cancer cell line response to high levels of extracellular H2O2 (eH2O2) exposure. This directly contributes to our understanding cellular efficacy of pharmacological ascorbate (P-AscH-) therapy. Here we investigate the factors contributing to latency of peroxisomal catalase of a cell and the importance of latency in evaluating cell exposure to eH2O2. First, we develop a mathematical framework for the latency of catalase in terms of an effectiveness factor, ηeff, to describe the catalase activity in the presence of high levels of eH2O2. A simplified relationship emerges, [Formula: see text] when mprp/Dij≪1, where mp,rp, and [Formula: see text] are the experimentally determined peroxisome permeability, average peroxisome radius, and the pseudo first-order reaction rate constant, respectively. [Formula: see text] is the catalase concentration in the peroxisome and k2=1.7x107M-1s-1. Next, previously published parameters are used to determine the latency effect of the cell lines: normal pancreatic cells (H6c7), pancreatic cancer cells (MIA PaCa-2), and glioblastoma cells (LN-229, T98G, and U-87), all which vary in their susceptibility to exposure to high eH2O2. The results show that effectiveness is not significantly different except for the most susceptible, MIA PaCa-2 cell line, which is higher when compared to all other cell lines. This result is counterintuitive and further implies that latency, as a single parameter, is ineffective in forecasting cell line susceptibility to P-AscH- therapy equivalent eH2O. Thus, further research remains necessary to identify why cancer cells vary in susceptibility to P-AscH- therapy.


Assuntos
Antineoplásicos , Glioblastoma , Neoplasias Pancreáticas , Antineoplásicos/uso terapêutico , Catalase , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Peróxido de Hidrogênio , Neoplasias Pancreáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA