RESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathwayâan active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.
Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Neurônios , Sistema de Sinalização das MAP Quinases , Encéfalo/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Antineoplásicos/efeitos adversos , MAP Quinase Quinase QuinasesRESUMO
ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.
Assuntos
Antineoplásicos , Disfunção Cognitiva , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Humanos , Zíper de Leucina , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Qualidade de VidaRESUMO
Bridging integrator 1 (BIN1) is the most significant late-onset Alzheimer's disease (AD) susceptibility locus identified via genome-wide association studies. BIN1 is an adaptor protein that regulates membrane dynamics in the context of endocytosis and membrane remodeling. An increase in BIN1 expression and changes in the relative levels of alternatively spliced BIN1 isoforms have been reported in the brains of patients with AD. BIN1 can bind to Tau, and an increase in BIN1 expression correlates with Tau pathology. In contrast, the loss of BIN1 expression in cultured cells elevates Aß production and Tau propagation by insfluencing endocytosis and recycling. Here, we show that BIN1 accumulates adjacent to amyloid deposits in vivo. We found an increase in insoluble BIN1 and a striking accrual of BIN1 within and near amyloid deposits in the brains of multiple transgenic models of AD. The peri-deposit aberrant BIN1 localization was conspicuously different from the accumulation of APP and BACE1 within dystrophic neurites. Although BIN1 is highly expressed in mature oligodendrocytes, BIN1 association with amyloid deposits occurred in the absence of the accretion of other oligodendrocyte or myelin proteins. Finally, super-resolution microscopy and immunogold electron microscopy analyses highlight the presence of BIN1 in proximity to amyloid fibrils at the edges of amyloid deposits. These results reveal the aberrant accumulation of BIN1 is a feature associated with AD amyloid pathology. Our findings suggest a potential role for BIN1 in extracellular Aß deposition in vivo that is distinct from its well-characterized function as an adaptor protein in endocytosis and membrane remodeling.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/patologia , Proteínas Nucleares/metabolismo , Placa Amiloide/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Placa Amiloide/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/fisiologia , Proteínas tau/metabolismoRESUMO
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by pathological brain lesions and a decline in cognitive function. ß-Amyloid peptides (Aß), derived from proteolytic processing of amyloid precursor protein (APP), play a central role in AD pathogenesis. ß-Site APP cleaving enzyme 1 (BACE1), the transmembrane aspartyl protease which initiates Aß production, is axonally transported in neurons and accumulates in dystrophic neurites near cerebral amyloid deposits in AD. BACE1 is modified by S-palmitoylation at four juxtamembrane cysteine residues. S-palmitoylation is a dynamic posttranslational modification that is important for trafficking and function of several synaptic proteins. Here, we investigated the in vivo significance of BACE1 S-palmitoylation through the analysis of knock-in mice with cysteine-to-alanine substitution at the palmitoylated residues (4CA mice). BACE1 expression, as well as processing of APP and other neuronal substrates, was unaltered in 4CA mice despite the lack of BACE1 S-palmitoylation and reduced lipid raft association. Whereas steady-state Aß levels were similar, synaptic activity-induced endogenous Aß production was not observed in 4CA mice. Furthermore, we report a significant reduction of cerebral amyloid burden and BACE1 accumulation in dystrophic neurites in the absence of BACE1 S-palmitoylation in mouse models of AD amyloidosis. Studies in cultured neurons suggest that S-palmitoylation is required for dendritic spine localization and axonal targeting of BACE1. Finally, the lack of BACE1 S-palmitoylation mitigates cognitive deficits in 5XFAD mice. Using transgenic mouse models, these results demonstrate that intrinsic posttranslational S-palmitoylation of BACE1 has a significant impact on amyloid pathogenesis and the consequent cognitive decline.
Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transtornos da Memória/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Lipoilação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/fisiologiaRESUMO
BACKGROUND: Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer's disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD. METHODS: In this study, we analyzed BIN1 mRNA and protein levels in human brain samples from individuals with or without AD. In addition, we characterized the BIN1 expression and isoform diversity in human and rodent tissue by immunohistochemistry and immunoblotting using a panel of BIN1 antibodies. RESULTS: Here, we report on BIN1 isoform diversity in the human brain and document alterations in the levels of select BIN1 isoforms in individuals with AD. In addition, we report striking BIN1 localization to white matter tracts in rodent and the human brain, and document that the large majority of BIN1 is expressed in mature oligodendrocytes whereas neuronal BIN1 represents a minor fraction. This predominant non-neuronal BIN1 localization contrasts with the strict neuronal expression and presynaptic localization of the BIN1 paralog, Amphiphysin 1. We also observe upregulation of BIN1 at the onset of postnatal myelination in the brain and during differentiation of cultured oligodendrocytes. Finally, we document that the loss of BIN1 significantly correlates with the extent of demyelination in multiple sclerosis lesions. CONCLUSION: Our study provides new insights into the brain distribution and cellular expression of an important risk factor associated with late-onset AD. We propose that efforts to define how genetic variants in BIN1 elevate the risk for AD would behoove to consider BIN1 function in the context of its main expression in mature oligodendrocytes and the potential for a role of BIN1 in the membrane remodeling that accompanies the process of myelination.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Nucleares/metabolismo , Oligodendroglia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Substância Branca/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Substância Branca/patologia , Proteínas tau/metabolismoRESUMO
Alzheimer disease (AD), the leading cause of dementia, is characterized by the accumulation of ß-amyloid peptides (Aß) in senile plaques in the brains of affected patients. Many cellular mechanisms are thought to play important roles in the development and progression of AD. Several lines of evidence point to the dysregulation of Ca(2+) homeostasis as underlying aspects of AD pathogenesis. Moreover, direct roles in the regulation of Ca(2+) homeostasis have been demonstrated for proteins encoded by familial AD-linked genes such as PSEN1, PSEN2, and APP, as well as Aß peptides. Whereas these studies support the hypothesis that disruption of Ca(2+) homeostasis contributes to AD, it is difficult to disentangle the effects of familial AD-linked genes on Aß production from their effects on Ca(2+) homeostasis. Here, we developed a system in which cellular Ca(2+) homeostasis could be directly manipulated to study the effects on amyloid precursor protein metabolism and Aß production. We overexpressed stromal interaction molecule 1 (STIM1) and Orai1, the components of the store-operated Ca(2+) entry pathway, to generate cells with constitutive and store depletion-induced Ca(2+) entry. We found striking effects of Ca(2+) entry induced by overexpression of the constitutively active STIM1(D76A) mutant on amyloid precursor protein metabolism. Specifically, constitutive activation of Ca(2+) entry by expression of STIM1(D76A) significantly reduced Aß secretion. Our results suggest that disruptions in Ca(2+) homeostasis may influence AD pathogenesis directly through the modulation of Aß production.