Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neurol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564053

RESUMO

Metachromatic leukodystrophy (MLD) is a neuro-metabolic disorder due to arylsulfatase A deficiency, causing demyelination of the central and peripheral nervous system. Hematopoietic cell transplantation (HCT) can provide a symptomatic and survival benefit for pre-symptomatic and early symptomatic patients by stabilizing CNS disease. This case series, however, illustrates the occurrence of severely progressive polyneuropathy shortly after HCT in two patients with late-infantile, one with late-juvenile, and one with adult MLD, leading to the inability to walk or sit without support. The patients had demyelinating polyneuropathy before HCT, performed at the ages of 2 years in the first two patients and at 14 and 23 years in the other two patients. The myeloablative conditioning regimen consisted of busulfan, fludarabine and, in one case, rituximab, with anti-thymocyte globulin, cyclosporine, steroids, and/or mycophenolate mofetil for GvHD prophylaxis. Polyneuropathy after HCT progressed parallel with tapering immunosuppression and paralleled bouts of infection and graft-versus-host disease (GvHD). Differential diagnoses included MLD progression, neurological GvHD or another (auto)inflammatory cause. Laboratory, electroneurography and pathology investigations were inconclusive. In two patients, treatment with immunomodulatory drugs led to temporary improvement, but not sustained stabilization of polyneuropathy. One patient showed recovery to pre-HCT functioning, except for a Holmes-like tremor, for which a peripheral origin cannot be excluded. One patient showed marginal response to immunosuppressive treatment and died ten months after HCT due to respiratory failure. The extensive diagnostic and therapeutic attempts highlight the challenge of characterizing and treating progressive polyneuropathy in patients with MLD shortly after HCT. We advise to consider repeat electro-neurography and possibly peripheral nerve biopsy in such patients. Nerve conduction blocks, evidence of the presence of T lymphocytes and macrophages in the neuronal and surrounding nerve tissue, and beneficial effects of immunomodulatory drugs may indicate a partially (auto)immune-mediated pathology. Polyneuropathy may cause major residual disease burden after HCT. MLD patients with progressive polyneuropathy could potentially benefit from a more intensified immunomodulatory drug regime following HCT, especially at times of immune activation.

2.
Brain ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489591

RESUMO

Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. Recent years altered this perception, as a growing number of leukodystrophies was described to have an onset at adult ages. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic Cerebral Amyloid Angiopathy that was found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid-old adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles, and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later on displayed severe degeneration and loss. In addition, despite loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of Cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.

3.
Tuberculosis (Edinb) ; 146: 102495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460493

RESUMO

In about 1% of tuberculosis (TB) patients, Mycobacterium tuberculosis (M. tuberculosis) can disseminate to the meninges, causing tuberculous meningitis (TBM) with mortality rate up to 60%. Chronic granulomatous inflammation (non-necrotizing and necrotizing) in the brain is the histological hallmark of TBM. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and the generated kynurenine metabolites exert major effector functions relevant to TB granuloma functioning. Here we have assessed immunohistochemically IDO1 expression and activity and its effector function and that of its isoform, IDO2, in post-mortem brain tissue of patients that demised with neurotuberculosis. We also related these findings to brain tissue of fatal/severe COVID-19. In this study, IDO1 and IDO2 were abundantly expressed and active in tuberculoid granulomas and were associated with the presence of M. tuberculosis as well as markers of autophagy and apoptosis. Like in fatal/severe COVID-19, IDO2 was also prominent in specific brain regions, such as the inferior olivary nucleus of medulla oblongata and cerebellum, but not associated with granulomas or with M. tuberculosis. Spatially associated apoptosis was observed in TBM, whereas in fatal COVID-19 autophagy dominated. Together, our findings highlight IDO2 as a potentially relevant effector enzyme in TBM, which may relate to the symptomology of TBM.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , COVID-19 , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Mycobacterium tuberculosis/metabolismo , Triptofano , Tuberculose Meníngea/metabolismo , Tuberculose Meníngea/patologia
4.
Ned Tijdschr Geneeskd ; 1672023 09 20.
Artigo em Holandês | MEDLINE | ID: mdl-37742126

RESUMO

BACKGROUND: Pyloromyotomy, the treatment for infants with hypertrophic pyloric stenosis, is a procedure with a low risk of complications and quick recovery. We describe a rare and fatal complication. CASE DESCRIPTION: A 12-year old boy presents with persistent abdominal pain and vomiting at his general practitioner. After he collapses, cardiopulmonary resuscitation is started and he is brought to the hospital where he died. His medical history mentioned pyloromyotomy, complicated by fascia dehiscence and recurrent abdominal pain since the age of six. No cause was ever found for his abdominal pain. Autopsy was performed and showed feces in the abdominal cavity caused by two perforations and an adhesive small bowel obstruction (ASBO) from the jejunum to the abdominal wall localized at the scar tissue of the pyloromyotomy with internal herniation. CONCLUSION: Complaints of abdominal pain in children with previous abdominal surgery may be caused by adhesions. If abdominal pain persists and no other cause can be found, diagnostic laparoscopy should be considered.


Assuntos
Parede Abdominal , Obstrução Intestinal , Masculino , Criança , Lactente , Humanos , Obstrução Intestinal/etiologia , Obstrução Intestinal/cirurgia , Jejuno , Dor Abdominal/etiologia , Autopsia
5.
Ann Clin Transl Neurol ; 10(6): 904-917, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165777

RESUMO

OBJECTIVE: Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS: Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS: MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION: Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.


Assuntos
Encéfalo , Mucopolissacaridose III , Criança , Humanos , Encéfalo/patologia , Terapia Genética/métodos , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Mucopolissacaridose III/patologia , Imuno-Histoquímica , Heparitina Sulfato/metabolismo , Heparitina Sulfato/uso terapêutico
6.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143309

RESUMO

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Assuntos
Edema Encefálico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutação/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Encéfalo/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Ann Clin Transl Neurol ; 10(7): 1146-1159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212343

RESUMO

OBJECTIVE: Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS: Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS: The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION: Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.


Assuntos
Doenças Desmielinizantes , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Doenças Neurodegenerativas , Humanos , Leucodistrofia Metacromática/terapia , Cerebrosídeo Sulfatase , Doenças Neurodegenerativas/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças Desmielinizantes/patologia
8.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080568

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Assuntos
COVID-19 , Humanos , Idoso , Biomarcadores , Inflamação , Citocinas , Envelhecimento
9.
Ann Neurol ; 92(5): 895-901, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947102

RESUMO

NOTCH1 belongs to the NOTCH family of proteins that regulate cell fate and inflammatory responses. Somatic and germline NOTCH1 variants have been implicated in cancer, Adams-Oliver syndrome, and cardiovascular defects. We describe 7 unrelated patients grouped by the presence of leukoencephalopathy with calcifications and heterozygous de novo gain-of-function variants in NOTCH1. Immunologic profiling showed upregulated CSF IP-10, a cytokine secreted downstream of NOTCH1 signaling. Autopsy revealed extensive leukoencephalopathy and microangiopathy with vascular calcifications. This evidence implicates that heterozygous gain-of-function variants in NOTCH1 lead to a chronic central nervous system (CNS) inflammatory response resulting in a calcifying microangiopathy with leukoencephalopathy. ANN NEUROL 2022;92:895-901.


Assuntos
Displasia Ectodérmica , Leucoencefalopatias , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Quimiocina CXCL10 , Sistema Nervoso Central/metabolismo
10.
Neurooncol Adv ; 4(1): vdac079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733514

RESUMO

Background: Diffuse midline gliomas (DMG) are highly malignant incurable pediatric brain tumors. A lack of effective treatment options highlights the need to investigate novel therapeutic strategies. This includes the use of immunotherapy, which has shown promise in other hard-to-treat tumors. To facilitate preclinical immunotherapeutic research, immunocompetent mouse models that accurately reflect the unique genetic, anatomical, and histological features of DMG patients are warranted. Methods: We established cell cultures from primary DMG mouse models (C57BL/6) that were generated by brainstem targeted intra-uterine electroporation (IUE). We subsequently created allograft DMG mouse models by orthotopically implanting these tumor cells into syngeneic mice. Immunohistochemistry and -fluorescence, mass cytometry, and cell-viability assays were then used to verify that these murine tumors recapitulated human DMG. Results: We generated three genetically distinct allograft models representing histone 3 wildtype (H3WT) and K27M-mutant DMG (H3.3K27M and H3.1K27M). These allograft models recapitulated the histopathologic phenotype of their human counterparts, including their diffuse infiltrative growth and expression of DMG-associated antigens. These murine pontine tumors also exhibited an immune microenvironment similar to human DMG, characterized by considerable myeloid cell infiltration and a paucity of T-lymphocytes and NK cells. Finally, we show that these murine DMG cells display similar sensitivity to histone deacetylase (HDAC) inhibition as patient-derived DMG cells. Conclusions: We created and validated an accessible method to generate immunocompetent allograft models reflecting different subtypes of DMG. These models adequately recapitulated the histopathology, immune microenvironment, and therapeutic response of human DMG, providing useful tools for future preclinical studies.

11.
Acta Neuropathol ; 144(2): 211-239, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713703

RESUMO

Tissue-resident macrophages of the brain, including microglia, are implicated in the pathogenesis of various CNS disorders and are possible therapeutic targets by their chemical depletion or replenishment by hematopoietic stem cell therapy. Nevertheless, a comprehensive understanding of microglial function and the consequences of microglial depletion in the human brain is lacking. In human disease, heterozygous variants in CSF1R, encoding the Colony-stimulating factor 1 receptor, can lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) possibly caused by microglial depletion. Here, we investigate the effects of ALSP-causing CSF1R variants on microglia and explore the consequences of microglial depletion in the brain. In intermediate- and late-stage ALSP post-mortem brain, we establish that there is an overall loss of homeostatic microglia and that this is predominantly seen in the white matter. By introducing ALSP-causing missense variants into the zebrafish genomic csf1ra locus, we show that these variants act dominant negatively on the number of microglia in vertebrate brain development. Transcriptomics and proteomics on relatively spared ALSP brain tissue validated a downregulation of microglia-associated genes and revealed elevated astrocytic proteins, possibly suggesting involvement of astrocytes in early pathogenesis. Indeed, neuropathological analysis and in vivo imaging of csf1r zebrafish models showed an astrocytic phenotype associated with enhanced, possibly compensatory, endocytosis. Together, our findings indicate that microglial depletion in zebrafish and human disease, likely as a consequence of dominant-acting pathogenic CSF1R variants, correlates with altered astrocytes. These findings underscore the unique opportunity CSF1R variants provide to gain insight into the roles of microglia in the human brain, and the need to further investigate how microglia, astrocytes, and their interactions contribute to white matter homeostasis.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adulto , Animais , Astrócitos/patologia , Doenças Desmielinizantes/patologia , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/patologia , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Peixe-Zebra
12.
iScience ; 25(6): 104398, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35637734

RESUMO

Diffuse midline gliomas (DMG) are highly malignant incurable pediatric brain tumors. In this study, we show that Aurora kinase A (AURKA) is overexpressed in DMG and can be used as a therapeutic target. Additionally, AURKA inhibition combined with CRISPR/Cas9 screening in DMG cells, revealed polo-like kinase 1 (PLK1) as a synergistic target with AURKA. Using a panel of patient-derived DMG culture models, we demonstrate that treatment with volasertib, a clinically relevant and selective PLK1 inhibitor, synergizes with different AURKA inhibitors, supporting the CRISPR screen results. Mechanistically, our results show that combined loss of PLK1 and AURKA causes a G2/M cell cycle arrest which blocks vital parts of DNA-damage repair and induces apoptosis, solely in DMG cells. Altogether, our findings highlight the importance of AURKA and PLK1 for DMG propagation and demonstrate the potential of concurrently targeting these proteins as a therapeutic strategy for these devastating pediatric brain tumors.

13.
Neuropediatrics ; 53(2): 115-121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026854

RESUMO

OBJECTIVE: Heterozygous NOTCH3 variants are known to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with patients typically presenting in adulthood. We describe three patients presenting at an early age with a vascular leukoencephalopathy. Genome sequencing revealed bi-allelic variants in the NOTCH3 gene. METHODS: Clinical records and available MRI and CT scans of three patients from two unrelated families were retrospectively reviewed. RESULTS: The patients presented at 9 to 14 months of age with developmental delay, seizures, or both. The disease course was characterized by cognitive impairment and variably recurrent strokes, migraine attacks, and seizures. MRI findings pointed at a small vessel disease, with extensive cerebral white matter abnormalities, atrophy, lacunes in the basal ganglia, microbleeds, and microcalcifications. The anterior temporal lobes were spared. Bi-allelic cysteine-sparing NOTCH3 variants in exons 1, 32, and 33 were found. INTERPRETATION: This study indicates that bi-allelic loss-of-function NOTCH3 variants may cause a vascular leukoencephalopathy, distinct from CADASIL.


Assuntos
CADASIL , Leucoencefalopatias , Receptor Notch3 , Adulto , Alelos , CADASIL/diagnóstico por imagem , CADASIL/genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Mutação , Receptor Notch3/genética , Estudos Retrospectivos , Convulsões
14.
Acta Neuropathol Commun ; 9(1): 142, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425907

RESUMO

The blood-brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Glioma/patologia , Acoplamento Neurovascular , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Barreira Hematoencefálica/patologia , Criança , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores/métodos , Acoplamento Neurovascular/fisiologia
15.
Free Neuropathol ; 22021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284626

RESUMO

Aims: Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain barrier (BBB). In this study we aim to investigate the neurovascular unit (NVU) in DIPG patients. Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-ß, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed. Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-ß and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (<10 µm) was significantly lower (P<0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm). Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients.

16.
J Child Neurol ; 36(2): 133-140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32988269

RESUMO

Leukoencephalopathy with calcifications and cysts (LCC) is a neurological syndrome recently associated with pathogenic variants in SNORD118. We report autopsy neuropathological findings from an individual with genetically confirmed LCC. Histologic studies included staining of formalin-fixed paraffin-embedded tissue sections by hematoxylin and eosin, elastic van Gieson, and luxol fast blue. Immunohistochemistry stains against glial fibrillary acidic protein, proteolipid protein, phosphorylated neurofilament, CD31, alpha-interferon, LN3, and inflammatory markers were performed. Gross examination revealed dark tan/gray appearing white matter with widespread calcifications. Microscopy revealed a diffuse destructive process due to a vasculopathy with secondary ischemic lesions and mineralization. The vasculopathy involved clustered small vessels, resembling vascular malformations, and sporadic lymphocytic infiltration of vessel walls. The white matter was also diffusely abnormal, with concurrent loss of myelin and axons, tissue rarefaction with multifocal cystic degeneration, and the presence of foamy macrophages, secondary calcifications, and astrogliosis. The midbrain, pons, and cerebellum were diffusely involved. It is not understood why variants in SNORD118 result in a disorder that predominantly causes neurological disease and significantly disrupts the cerebral vasculature. Clinical and radiological benefit was recently reported in an LCC patient treated with Bevacizumab; it is important that these patients are rapidly diagnosed and trial of this treatment modality is considered in appropriate circumstances.


Assuntos
Calcinose/complicações , Calcinose/patologia , Cistos do Sistema Nervoso Central/complicações , Cistos do Sistema Nervoso Central/patologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Leucoencefalopatias/complicações , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Autopsia , Encéfalo/patologia , Criança , Evolução Fatal , Humanos , Masculino
17.
Front Cell Neurosci ; 14: 608073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328899

RESUMO

Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.

18.
J Inherit Metab Dis ; 43(6): 1265-1278, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557630

RESUMO

Sjögren-Larsson syndrome (SLS) is a rare neurometabolic syndrome caused by deficient fatty aldehyde dehydrogenase. Patients exhibit intellectual disability, spastic paraplegia, and ichthyosis. The accumulation of fatty alcohols and fatty aldehydes has been demonstrated in plasma and skin but never in brain. Brain magnetic resonance imaging and spectroscopy studies, however, have shown an abundant lipid peak in the white matter of patients with SLS, suggesting lipid accumulation in the brain as well. Using histopathology, mass spectrometry imaging, and lipidomics, we studied the morphology and the lipidome of a postmortem brain of a 65-year-old female patient with genetically confirmed SLS and compared the results with a matched control brain. Histopathological analyses revealed structural white matter abnormalities with the presence of small lipid droplets, deficient myelin, and astrogliosis. Biochemically, severely disturbed lipid profiles were found in both white and gray matter of the SLS brain, with accumulation of fatty alcohols and ether lipids. Particularly, long-chain unsaturated ether lipid species accumulated, most prominently in white matter. Also, there was a striking accumulation of odd-chain fatty alcohols and odd-chain ether(phospho)lipids. Our results suggest that the central nervous system involvement in SLS is caused by the accumulation of fatty alcohols leading to a disbalance between ether lipid and glycero(phospho)lipid metabolism resulting in a profoundly disrupted brain lipidome. Our data show that SLS is not a pure leukoencephalopathy, but also a gray matter disease. Additionally, the histopathological abnormalities suggest that astrocytes and microglia might play a pivotal role in the underlying disease mechanism, possibly contributing to the impairment of myelin maintenance.


Assuntos
Encéfalo/metabolismo , Éteres/metabolismo , Álcoois Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Síndrome de Sjogren-Larsson/metabolismo , Idoso , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Síndrome de Sjogren-Larsson/patologia
19.
Clin Cancer Res ; 26(13): 3319-3332, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32165429

RESUMO

PURPOSE: Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype. EXPERIMENTAL DESIGN: We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors. Patient-derived neurospheres, xenografts, and allografts were used to determine the therapeutic potential of combined AXL/HDAC inhibition for the treatment of DIPG. RESULTS: We identified AXL as a therapeutic target and regulator of the mesenchymal transition in DIPG. Combined AXL and HDAC inhibition had a synergistic and selective antitumor effect on H3K27M DIPG cells. Treatment of DIPG cells with the AXL inhibitor BGB324 and the HDAC inhibitor panobinostat resulted in a decreased expression of mesenchymal and stem cell genes. Moreover, this combination treatment decreased expression of DNA damage repair genes in DIPG cells, strongly sensitizing them to radiation. Pharmacokinetic studies showed that BGB324, like panobinostat, crosses the blood-brain barrier. Consequently, treatment of patient-derived DIPG xenograft and murine DIPG allograft-bearing mice with BGB324 and panobinostat resulted in a synergistic antitumor effect and prolonged survival. CONCLUSIONS: Combined inhibition of AXL and HDACs in DIPG cells results in a synergistic antitumor effect by reversing their mesenchymal, stem cell-like, therapy-resistant phenotype. As such, this treatment combination may serve as part of a future multimodal therapeutic strategy for DIPG.


Assuntos
Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Benzocicloeptenos/farmacologia , Biomarcadores Tumorais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/etiologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Imuno-Histoquímica , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
20.
Ann Clin Transl Neurol ; 7(2): 169-180, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31967741

RESUMO

OBJECTIVE: In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. METHODS: Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann-Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. RESULTS: In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. INTERPRETATION: In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.


Assuntos
Encéfalo , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática/terapia , Macrófagos , Oligodendroglia , Remielinização/fisiologia , Adulto , Autopsia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Remielinização/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA