Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3344, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336904

RESUMO

Endoscopic Retrograde Cholangio-Pancreatography (ERCP) with biliary stenting is a minimally invasive medical procedure employed to address both malignant and benign obstructions within the biliary tract. Benign biliary strictures (BBSs), typically arising from surgical interventions such as liver transplants and cholecystectomy, as well as chronic inflammatory conditions, present a common clinical challenge. The current gold standard for treating BBSs involves the periodic insertion of plastic stents at intervals of 3-4 months, spanning a course of approximately one year. Unfortunately, stent occlusion emerges as a prevalent issue within this treatment paradigm, leading to the recurrence of symptoms and necessitating repeated ERCPs. In response to this clinical concern, we initiated a pilot study, delving into the microbial composition present in bile and on the inner surfaces of plastic stents. This investigation encompassed 22 patients afflicted by BBSs who had previously undergone ERCP with plastic stent placement. Our preliminary findings offered promising insights into the microbial culprits behind stent occlusion, with Enterobacter and Lactobacillus spp. standing out as prominent bacterial species known for their biofilm-forming tendencies on stent surfaces. These revelations hold promise for potential interventions, including targeted antimicrobial therapies aimed at curtailing bacterial growth on stents and the development of advanced stent materials boasting anti-biofilm properties.


Assuntos
Sistema Biliar , Colestase , Humanos , Bile , Projetos Piloto , Resultado do Tratamento , Colestase/cirurgia , Colangiopancreatografia Retrógrada Endoscópica/métodos , Stents , Estudos Retrospectivos
2.
Plants (Basel) ; 12(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446996

RESUMO

Researchers have explored natural products to combat the antibiotic resistance of various microorganisms. Cinnamaldehyde (CIN), a major component of cinnamon essential oil (CC-EO), has been found to effectively inhibit the growth of bacteria, fungi, and mildew, as well as their production of toxins. Therefore, this study aimed to create a delivery system for CIN using PLGA microparticles (CIN-MPs), and to compare the antifungal activity of the carried and free CIN, particularly against antibiotic-resistant strains of Candida spp. The first part of the study focused on synthesizing and characterizing the PLGA MPs, which had no toxic effects in vivo and produced results in line with the existing literature. The subsequent experiments analyzed the antifungal effects of MPs-CIN on Candida albicans and Candida glabrata, both resistant (R) and sensitive (S) strains and compared its efficacy with the conventional addition of free CIN to the culture medium. The results indicated that conveyed CIN increased the antifungal effects of the product, particularly towards C. albicans R. The slow and prolonged release of CIN from the PLGA MPs ensured a constant and uniform concentration of the active principle within the cells.

3.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679069

RESUMO

BACKGROUND: Candida auris represents an emerging pathogen that results in nosocomial infections and is considered a serious global health problem. The aim of this work was to evaluate the in vitro antifungal efficacy of Cinnamomum cassia essential oil (CC-EO) pure or formulated in polycaprolactone (PCL) nanoparticles against ten clinical strains of C. auris. METHODS: nanoparticles of PCL were produced using CC-EO (nano-CC-EO) and cinnamaldehyde (CIN) through the nanoprecipitation method. The chemical profile of both CC-EO and nano-CC-EO was evaluated using SPME sampling followed by GC-MS analysis. Micro-broth dilution tests were performed to evaluate both fungistatic and fungicidal effectiveness of CC-EO and CIN, pure and nano-formulated. Furthermore, checkerboard tests to evaluate the synergistic action of CC-EO or nano-CC-EO with micafungin or fluconazole were conducted. Finally, the biofilm disrupting activity of both formulations was evaluated. RESULTS: GC-MS analysis shows a different composition between CC-EO and nano-CC-EO. Moreover, the microbiological analyses do not show any variation in antifungal effectiveness either towards the planktonic form (MICCC-EO = 0.01 ± 0.01 and MICnano-CC-EO = 0.02 ± 0.01) or the biofilm form. No synergistic activity with the antifungal drugs tested was found. CONCLUSIONS: both CC-EO and nano-CC-EO show the same antimicrobial effectiveness and are potential assets in the fight against C. auris.

4.
Microbiol Res ; 263: 127152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944357

RESUMO

Antibiotic resistance is a serious health and social problem that will have a substantial impact in the coming years on the world health and economy. Thus, the increasing demand for innovative antibiotics, has prompted many researchers in the medical, microbiological, and biochemical fields to exploit the properties of antimicrobial peptides (AMPs). When properly used, designed, and conveyed, AMPs can really represent a valid alternative to conventional drugs especially in situations that are particularly difficult to treat such as chronic infections found in Cystic Fibrosis (CF) patients. In this review we focused on the applications of AMPs in the specific field of CF, illustrating different types of peptides from natural, naturally modified, synthetic as well as the different strategies used to overcome the barriers, and the physiological conditions in which AMPs must operate.


Assuntos
Infecções Bacterianas , Fibrose Cística , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
5.
Odontology ; 110(4): 710-718, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35355145

RESUMO

Membrane exposure is a widely reported and relatively common complication in Guided Bone Regeneration (GBR) procedures. The introduction of micro-porous dPTFE barriers, which are impervious to bacterial cells, could reduce the technique sensitivity to membrane exposure, even if there are no studies investigating the potential passage of bacterial metabolites through the barrier. Aim of this study was the in vitro evaluation of the permeability of three different GBR membranes (dPTFE, native and cross-linked collagen membranes) to Porphyromonas gingivalis; in those cases, where bacterial penetration could not be observed, another purpose was the analysis of the viability and differentiation capability of an osteosarcoma (U2OS) cell line in presence of bacteria eluate obtained through membrane percolation. A system leading to the percolation of P. gingivalis broth culture through the experimental membranes was arranged to assess the permeability to bacteria after 24 and 72 h of incubation. The obtained solution was then added to U2OS cell cultures which underwent, after 10 days of incubation, MTT and red alizarin essays. The dPTFE membrane showed resistance to bacterial penetration, while both types of collagen membranes were crossed by P. gingivalis after 24 h. The bacteria eluate filtered through dPTFE membrane didn't show any toxicity on U2OS cells. Results of this study demonstrate that dPTFE membranes can contrast the penetration of both P. gingivalis and its metabolites toxic for osteoblast-like cells. The toxicity analysis was not possible for the collagen membranes, since permeability to bacterial cells was observed within the first period of incubation.


Assuntos
Colágeno , Membranas Artificiais , Regeneração Óssea , Osteoblastos/metabolismo , Permeabilidade , Porphyromonas gingivalis
6.
J Fungi (Basel) ; 8(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205894

RESUMO

Preserving artworks from the attacks of biodeteriogens is a primary duty of humanity. Nowadays, restorers use chemicals potentially dangerous for both artworks and human health. The purpose of this work was to find a green and safe formulation based on natural substances with fungicidal activity to restore ancient oil paintings, particularly "Il Silenzio" (by Jacopo Zucchi) preserved at the Uffizi Museum in Florence, Italy. The study was divided into two phases. First phase (in vitro study): three essential oils (EOs) and four hydrolates (Hys) were analysed by GC-mass spectrometry and in vitro tested against six ATCC strains of molds. An emulsion based on the more active natural compounds was tested on aged and unaged canvases samples to evaluate both their fungicidal activity and the impact on chemical-physical parameters. Finally, an in vivo toxicity test performed on the Galleria mellonella model assessed the safety for health. Second phase (in situ application): the emulsion was sprayed on the back of the painting and left to act for 24 h. Biodeteriogens present on the "Il Silenzio" painting were microbiologically identified before and after the treatment. The emulsion formulated with C. zeylanicum EO and C. aurantium var. amara Hy showed the best antifungal activity both in vitro and in situ without altering the chemical-physical characteristics of paintings. Furthermore, no in vivo toxicity was shown. For the first time, a green antimicrobial emulsion based on Hy and EO, safe for operators, was used to decontaminate an artwork colonised by fungi before the restoration practices.

7.
Microorganisms ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208660

RESUMO

A modern painting is characterized by multi-material bases extremely exposed to biodeteriogenic attacks. The aim of this work was to test the antifungal effectiveness of a natural, eco-friendly, and safe emulsion based on Citrus aurantium L. var. amara hydrolate and Cinnamomum zeylanicum Blume (from bark) essential oil, named "Zeylantium green emulsion" (Zege), on modern paintings. Colored unaged and aged canvas samples, performed with modern techniques (acrylic, vinylic and alkyd), were used to test in vitro both the antifungal effectiveness of Zege and its impact on the chemical-physical characteristics. Microbiological tests were performed according to the EUCAST international guidelines. pH measurements and colorimetric analysis were performed on unaged and aged canvases before and after Zege spray treatment. Finally, in situ tests were performed using the spray emulsion on canvas samples obtained from Ilaria Margutti's modern artwork, which had been colonized by molds. Microbiological tests on canvas prototypes showed a time- and dose-dependent effectiveness of the Zege spray. None of the techniques underwent relevant changes in pH. Only the acrylic colors were unaffected in the colorimetric analysis, among all colored unaged or aged canvases. Tests made with modern artwork samples confirmed the in situ antifungal effectiveness. The Zege spray showed encouraging results in regard to the use of this formulation in the restoration of modern paintings.

8.
J Inorg Biochem ; 230: 111751, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151101

RESUMO

The use of inhalable nanoparticles (NPs) for cystic fibrosis (CF) has been advocated as a promising tool to improve the efficacy of antimicrobials taking advantage of their ability to penetrate airway mucus and pathogen biofilm and to release the drug in or in proximity to the enclosed bacteria. Here, inhalable calcium phosphate (CaP) NPs were functionalized with colistin (Col) which is one of the most active antimicrobials against Gram-negative bacteria. The adsorption kinetic and isotherm of Col on CaP-NPs were investigated and fitted according to different mathematical models and revealed an electrostatic interaction between positively charged amine groups of Col and negatively charged surface of CaP-NPs. The maximum Col payload was of about 50 mg g-1 of CaP-NPs. After functionalization, despite an increase of size (213 vs 95 nm), in citrate solution, CaP-NPs maintained a dimension and surface charge considered suitable for crossing mucus barrier. CaP-NPs do not interact with mucin and are able to permeate a layer of artificial mucus. In vitro tests on pulmonary cells demonstrated that CaP-NPs are not cytotoxic up to a concentration of 125 µg mL-1. The antimicrobial and antibiofilm activity of Col loaded CaP-NPs tested on Pseudomonas aeruginosa RP73, a clinical strain isolated from a CF patient, was similar to that of free Col demonstrating that the therapeutic effect of Col adsorbed on CaP-NPs was retained. This work represents the first attempt to use CaP-NPs as delivery system for the CF treatment. The encouraging results open the way to further studies.


Assuntos
Fibrose Cística , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Fosfatos de Cálcio/farmacologia , Colistina/farmacologia , Colistina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Humanos , Pseudomonas aeruginosa
9.
Cancers (Basel) ; 13(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34771731

RESUMO

DDX3X is an ATP-dependent RNA helicase that has recently attracted interest for its involvement in viral replication and oncogenic progression. Starting from hit compounds previously identified by our group, we have designed and synthesized a new series of DDX3X inhibitors that effectively blocked its helicase activity. These new compounds were able to inhibit the proliferation of cell lines from different cancer types, also in DDX3X low-expressing cancer cell lines. According to the absorption, distribution, metabolism, elimination properties, and antitumoral activity, compound BA103 was chosen to be further investigated in glioblastoma models. BA103 determined a significant reduction in the proliferation and migration of U87 and U251 cells, downregulating the oncogenic protein ß-catenin. An in vivo evaluation demonstrated that BA103 was able to reach the brain and reduce the tumor growth in xenograft and orthotopic models without evident side effects. This study represents the first demonstration that DDX3X-targeted small molecules are feasible and promising drugs also in glioblastoma.

10.
Antibiotics (Basel) ; 9(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142685

RESUMO

Salmonella spp. represent a public health concern for humans and animals due to the increase of antibiotic resistances. In this scenario, the use of essential oils (EOs) could be a valid tool against Salmonella contamination of meat. This work compares the in vitro effectiveness of an Italian mixture of feed additives based on EOs (GR-OLI) with EO of Origanum vulgare L., recently admitted by European Food Safety Authority (EFSA) for animal use. Twenty-nine Salmonella serotypes isolated from poultry and pig farms were used to assess GR-OLI and O. vulgare EO antimicrobial propeties. O. vulgare EO was active on the disaggregation of mature biofilm, while GR-OLI was capable of inhibiting biofilm formation and disaggregating preformed biofilm. Furthermore, GR-OLI inhibited bacterial adhesion to Caco-2 cells in a dose-dependent manner. Both products showed inhibition of bacterial growth at all time points tested. Finally, the synergistic action of GR-OLI with commonly used antibiotics against resistant strains was investigated. In conclusion, the mixture could be used both to reduce the meat contamination of Salmonella spp. before slaughter, and in synergy with low doses of ciprofloxacin against resistant strains. Although EOs as feed additives are already used in animal husbandry, no scientific study has ever highlighted their real antimicrobial potential.

11.
Nutrients ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392768

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a functional disorder without any pathological alteration, in which the alterations of the Candida/Saccharomyces ratio of the gut microbiota, the balance of pro and anti-inflammatory cytokines and the brain-gut-microbiome axis are important for the development and progression of IBS. The aim of the study was to identify natural products, including essential oils or hydrolates, which were contextually harmless for the gut beneficial strains (e.g. Saccharomyces spp.) but inhibitory for the pathogenic ones (Candida spp.). METHODS: The effectiveness of 6 essential oils and 2 hydrolates was evaluated using microbiological tests, carried out on 50 clinical isolates (Candida, Saccharomyces and Galattomyces species) and 9 probiotic strains (Saccharomyces cerevisiae, Lactobacillus species, Akkermansia muciniphila and Faecalibacterium prausnitzii) and immunological and antioxidant assays. RESULTS: The study led to a mixture based on a 1/100 ratio of Citrus aurantium var. amara essential oil / Vitis vinifera cv Italia hydrolate able to contextually reduce, in a concentration-dependent manner, the ability of Candida species to form hyphal filaments and have an interesting immunomodulatory and anti-oxidant action. This mixture can potentially be useful in the IBS treatment promoting the restoration of the intestinal microbial and immunological balance.


Assuntos
Candida/efeitos dos fármacos , Citrus/química , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/microbiologia , Lactobacillus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vitis/química , Akkermansia/efeitos dos fármacos , Antioxidantes , Candida/patogenicidade , Relação Dose-Resposta a Droga , Resistência Microbiana a Medicamentos , Faecalibacterium prausnitzii/efeitos dos fármacos , Humanos , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Probióticos
12.
Cancers (Basel) ; 11(6)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248184

RESUMO

Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.

13.
Dev Comp Immunol ; 96: 9-17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30790604

RESUMO

The increasing resistance to conventional antibiotics is an urgent problem that can be addressed by the discovery of new antimicrobial drugs such as antimicrobial peptides (AMPs). AMPs are components of innate immune system of eukaryotes and are not prone to the conventional mechanisms that are responsible of drug resistance. Fish are an important source of AMPs and, recently, we have isolated and characterized a new 22 amino acid residues peptide, the chionodracine (Cnd), from the Antarctic icefish Chionodraco hamatus. In this paper we focused on a new Cnd-derived mutant peptide, namely Cnd-m3a, designed to improve the selectivity against prokaryotic cells and the antimicrobial activity against human pathogens of the initial Cnd template. Cnd-m3a was used for immunization of rabbits, which gave rise to a polyclonal antibody able to detect the peptide. The interaction kinetic of Cnd-m3a with the Antarctic bacterium Psychrobacter sp. (TAD1) was imaged using a transmission electron microscopy (TEM) immunogold method. Initially the peptide was associated with the plasma membrane, but after 180 min of incubation, it was found in the cytoplasm interacting with a DNA target inside the bacterial cells. Using fluorescent probes we showed that the newly designed mutant can create pores in the outer membrane of the bacteria E. coli and Psychrobacter sp. (TAD1), confirming the results of TEM analysis. Moreover, in vitro assays demonstrated that Cnd-m3a is able to bind lipid vesicles of different compositions with a preference toward negatively charged ones, which mimics the prokaryotic cell. The Cnd-m3a peptide showed quite low hemolytic activity and weak cytotoxic effect against human primary and tumor cell lines, but high antimicrobial activity against selected Gram - human pathogens. These results highlighted the high potential of the Cnd-m3a peptide as a starting point for developing a new human therapeutic agent.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Psychrobacter/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/ultraestrutura , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Mutação , Psychrobacter/fisiologia , Coelhos , Testes de Toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-31921811

RESUMO

Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.

15.
Nanomedicine (Lond) ; 13(22): 2867-2879, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30431405

RESUMO

AIM: Fabrication of graphene oxide (GO)-based medical devices coatings that limit adhesion of Candida albicans, a main issue of healthcare-associated infections. METHODS: The GO composites noncovalently functionalized with curcumin (CU), a hydrophobic molecule with active antimicrobial action, polyethylene glycol (PEG) that hinders the absorption of biomolecules or a combination of CU and PEG (GO-CU-PEG) were drop-casted on surfaces and antifungal efficacy was assessed. RESULTS: We demonstrate that GO-CU-PEG coatings can reduce fungal adhesion, proliferation and biofilm formation. Furthermore, in an aqueous environment, surfaces release curcumin-PEG nanocomposites that have a minimum inhibitory concentration of 9.25 µg/ml against C. albicans. CONCLUSION: Prevention of early cell adhesion and creation of a proximal environment unfavorable for growth make these GO-supported biomaterials attractive for innovative medical device manufacturing.


Assuntos
Antifúngicos/farmacologia , Curcumina/farmacologia , Grafite/química , Nanocompostos/química , Animais , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Epiteliais , Haplorrinos , Terapia de Alvo Molecular/métodos , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de Superfície
16.
Int J Cardiol ; 236: 95-99, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28268083

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) has a close functional and anatomic relationship with epicardial coronary arteries. Accumulating evidence suggests that host microbiome alterations may play a role in several inflammatory/immune disorders, triggering a robust proinflammatory response also involving interleukin-1ß (IL-1ß) and the NALP3 inflammasome. In the current study, we explore the hypothesis that in patients with non-ST elevation acute coronary syndrome (ACS), EAT contains potentially pro-atherosclerotic bacteria that might elicit inflammasome activation. METHODS: EAT samples were obtained during coronary artery bypass grafting from ACS (n=18) and effort stable angina (SA; n=16) patients, and as controls, from patients with angiographically normal coronary arteries undergoing surgery for mitral insufficiency (MVD; n=13). In all patients, NALP3 and proIL-1ß mRNA expressions were evaluated with qRT-PCR. In 3 patients from each group, EAT microbiota composition was determined using next-generation sequencing technologies. RESULTS: In EAT, mRNA expression of both NALP3 and pro-IL1ß was significantly higher in ACS than in SA and MVD (P=0.028 and P=0.005, respectively). A broad range of bacterial species (n=76) was identified in both ACS and SA, with different predominant species. In contrast, microbial DNA was barely observed in MVD. CONCLUSIONS: Our study demonstrated the presence of bacterial DNA directly into EAT, surrounding diseased coronary arteries, of patients with ACS. Furthermore, ACS is associated with NALP3/inflammasome pathway activation in EAT. Our data suggest that the EAT environment is susceptible to microbial colonization that might stimulate a proinflammatory response. These findings add new elements to the pathogenesis of ACS and suggest novel therapeutic targets.


Assuntos
Síndrome Coronariana Aguda , Tecido Adiposo , Ponte de Artéria Coronária/métodos , Inflamassomos/fisiologia , Microbiota/fisiologia , Pericárdio , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/imunologia , Síndrome Coronariana Aguda/cirurgia , Tecido Adiposo/imunologia , Tecido Adiposo/microbiologia , Tecido Adiposo/patologia , Idoso , Contagem de Colônia Microbiana/métodos , Vasos Coronários/patologia , DNA Bacteriano/isolamento & purificação , Feminino , Humanos , Interleucina-1beta/análise , Itália , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/análise , Pericárdio/imunologia , Pericárdio/microbiologia , Pericárdio/patologia , Estatística como Assunto
17.
Sci Rep ; 7: 45120, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345623

RESUMO

Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.


Assuntos
Imunidade Inata , Lipossomos , Fagocitose , Fosfatos de Fosfatidilinositol/imunologia , Adolescente , Adulto , Linhagem Celular Tumoral , Células Cultivadas , Criança , Farmacorresistência Bacteriana , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Fagossomos/efeitos dos fármacos , Fagossomos/imunologia , Fosfatos de Fosfatidilinositol/administração & dosagem , Fosfatos de Fosfatidilinositol/farmacologia , Pseudomonas aeruginosa/imunologia
18.
Blood Purif ; 42(4): 294-300, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27577953

RESUMO

BACKGROUND: This study aims to evaluate, in patients on chronic hemodialysis (PHD), the levels of endotoxin through a chemiluminescent bioassay based on the oxidative burst reaction of activated neutrophils to complement coated LPS-IgM immune complexes and define the variables possibly correlated. METHODS: In 61 PHD, we measured serum endotoxin activity (EA) with the Endotoxin Activity Assay (EAA™) and we defined the possible association with demographic, clinical and laboratory variables. RESULTS: Mean serum EA was 0.43 ± 0.26 UI. EA was low (<0.40) in 29 patients (47.5%), intermediate (0.40-0.60) in 14 (23%) and high (>0.60) in 18 (29.5%). A significant exponential relationship was detected between EA and serum interleukin-6 (IL-6) levels (r = 0.871). At the multiple regression analysis, intermediate-high EA was directly associated only with serum IL-6 levels. In a second model of multiple regression analysis without the variable serum IL-6 levels, intermediate-high EA was directly associated with constipation and serum troponin levels and inversely associated with serum albumin and the monthly number of sevelamer tablets. CONCLUSIONS: A high percentage of PHD has intermediate or high EA. Intermediate-high EA is significantly associated with serum IL-6 levels.


Assuntos
Interleucina-6/sangue , Diálise Renal , Endotoxinas/sangue , Humanos , Análise Multivariada , Albumina Sérica
19.
Proc Natl Acad Sci U S A ; 113(19): 5388-93, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118832

RESUMO

Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target.


Assuntos
Antivirais/administração & dosagem , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Terapia de Alvo Molecular/métodos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Desenho de Fármacos , Inibidores Enzimáticos
20.
Sci Rep ; 6(1): 12, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28442744

RESUMO

Antibacterial surfaces have an enormous economic and social impact on the worldwide technological fight against diseases. However, bacteria develop resistance and coatings are often not uniform and not stable in time. The challenge is finding an antibacterial coating that is biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces. Here we demonstrate an antibacterial cloak by laser printing of graphene oxide hydrogels mimicking the Cancer Pagurus carapace. We observe up to 90% reduction of bacteria cells. This cloak exploits natural surface patterns evolved to resist to microorganisms infection, and the antimicrobial efficacy of graphene oxide. Cell integrity analysis by scanning electron microscopy and nucleic acids release show bacteriostatic and bactericidal effect. Nucleic acids release demonstrates microorganism cutting, and microscopy reveals cells wrapped by the laser treated gel. A theoretical active matter model confirms our findings. The employment of biomimetic graphene oxide gels opens unique possibilities to decrease infections in biomedical applications and chirurgical equipment; our antibiotic-free approach, based on the geometric reduction of microbial adhesion and the mechanical action of Graphene Oxide sheets, is potentially not affected by bacterial resistance.


Assuntos
Ágar , Antibacterianos/química , Materiais Biomiméticos/química , Materiais Revestidos Biocompatíveis/química , Grafite/química , Hidrogéis/química , Óxidos/química , Exoesqueleto , Animais , Antibacterianos/farmacologia , Materiais Biomiméticos/farmacologia , Braquiúros , Candida albicans/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Hidrogéis/farmacologia , Lasers , Óxidos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA