Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 108(5): 1084-1092, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36458872

RESUMO

CONTEXT: A portion of ingested fats are retained in the intestine for many hours before they are mobilized and secreted in chylomicron (CM) particles. Factors such as glucagon-like peptide-2 (GLP-2) and glucose can mobilize these stored intestinal lipids and enhance CM secretion. We have recently demonstrated in rodents that GLP-2 acutely enhances CM secretion by mechanisms that do not involve the canonical CM synthetic assembly and secretory pathways. OBJECTIVE: To further investigate the mechanism of GLP-2's potent intestinal lipid mobilizing effect, we examined intracellular cytoplasmic lipid droplets (CLDs) in intestinal biopsies of humans administered GLP-2 or placebo. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: A single dose of placebo or GLP-2 was administered subcutaneously 5 hours after ingesting a high-fat bolus. In 1 subset of participants, plasma samples were collected to quantify lipid and lipoprotein concentrations for 3 hours after placebo or GLP-2. In another subset, a duodenal biopsy was obtained 1-hour after placebo or GLP-2 administration for transmission electron microscopy and proteomic analysis. RESULTS: GLP-2 significantly increased plasma triglycerides by 46% (P = 0.009), mainly in CM-sized particles by 133% (P = 0.003), without reducing duodenal CLD size or number. Several proteins of interest were identified that require further investigation to elucidate their potential role in GLP-2-mediated CM secretion. CONCLUSIONS: Unlike glucose that mobilizes enterocyte CLDs and enhances CM secretion, GLP-2 acutely increased plasma CMs without significant mobilization of CLDs, supporting our previous findings that GLP-2 does not act directly on enterocytes to enhance CM secretion and most likely mobilizes secreted CMs in the lamina propria and lymphatics.


Assuntos
Quilomícrons , Gotículas Lipídicas , Humanos , Quilomícrons/metabolismo , Triglicerídeos , Gotículas Lipídicas/metabolismo , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Proteômica , Glucose
2.
Front Oncol ; 11: 576326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141606

RESUMO

One of the characteristic features of metastatic breast cancer is increased cellular storage of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However, how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid core, a phospholipid monolayer, and associated proteins. Proteins that associate with CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in metastatic breast cancer and how these proteins may contribute to breast cancer progression is unknown. Therefore, the purpose of this study was to identify the proteome and assess the characteristics of CLDs in the MCF10CA1a human metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500 proteins involved in a variety of cellular processes in the isolated CLD fraction. Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most enriched protein categories were involved in cellular processes outside of lipid metabolism. For example, cell-cell adhesion was the most enriched category of proteins identified, and many of these proteins have been implicated in breast cancer metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using transmission electron microscopy. Our results provide a hypothesis-generating list of potential players in breast cancer progression and offers a new perspective on the role of CLDs in cancer.

3.
Cell Mol Gastroenterol Hepatol ; 7(2): 313-337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30704982

RESUMO

BACKGROUND & AIMS: The small intestine regulates plasma triglyceride (TG) concentration. Within enterocytes, dietary TGs are packaged into chylomicrons (CMs) for secretion or stored temporarily in cytoplasmic lipid droplets (CLDs) until further mobilization. We and others have shown that oral and intravenous glucose enhances CM particle secretion in human beings, however, the mechanisms through which this occurs are incompletely understood. METHODS: Two separate cohorts of participants ingested a high-fat liquid meal and, 5 hours later, were assigned randomly to ingest either a glucose solution or an equivalent volume of water. In 1 group (N = 6), plasma and lipoprotein TG responses were assessed in a randomized cross-over study. In a separate group (N = 24), duodenal biopsy specimens were obtained 1 hour after ingestion of glucose or water. Ultrastructural and proteomic analyses were performed on duodenal biopsy specimens. RESULTS: Compared with water, glucose ingestion increased circulating TGs within 30 minutes, mainly in the CM fraction. It decreased the total number of CLDs and the proportion of large-sized CLDs within enterocytes. We identified 2919 proteins in human duodenal tissue, 270 of which are related to lipid metabolism and 134 of which were differentially present in response to glucose compared with water ingestion. CONCLUSIONS: Oral glucose mobilizes TGs stored within enterocyte CLDs to provide substrate for CM synthesis and secretion. Future studies elucidating the underlying signaling pathways may provide mechanistic insights that lead to the development of novel therapeutics for the treatment of hypertriglyceridemia.


Assuntos
Glucose/administração & dosagem , Intestinos/química , Triglicerídeos/metabolismo , Administração Oral , Adulto , Biópsia , Quilomícrons/metabolismo , Dieta Hiperlipídica , Duodeno/patologia , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Jejum , Feminino , Ontologia Genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Metabolismo dos Lipídeos/genética , Lipoproteínas VLDL/metabolismo , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
4.
Mol Cancer Res ; 14(9): 776-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27341831

RESUMO

UNLABELLED: Cholesterol accumulates in prostate lesions and has been linked to prostate cancer incidence and progression. However, how accumulated cholesterol contributes to prostate cancer development and progression is not completely understood. Cholesterol sulfate (CS), the primary sulfonation product of cholesterol sulfotransferase (SULT2B1b), accumulates in human prostate adenocarcinoma and precancerous prostatic intraepithelial neoplasia (PIN) lesions compared with normal regions of the same tissue sample. Given the enhanced accumulation of CS in these lesions, it was hypothesized that SULT2B1b-mediated production of CS provides a growth advantage to these cells. To address this, prostate cancer cells with RNAi-mediated knockdown (KD) of SULT2B1b were used to assess the impact on cell growth and survival. SULT2B1b is expressed and functional in a variety of prostate cells, and the data demonstrate that SULT2B1b KD, in LNCaP and other androgen-responsive (VCaP and C4-2) cells, results in decreased cell growth/viability and induces cell death. SULT2B1b KD also decreases androgen receptor (AR) activity and expression at mRNA and protein levels. While AR overexpression has no impact on SULT2B1b KD-mediated cell death, the addition of exogenous androgen is able to partially rescue the growth inhibition induced by SULT2B1b KD in LNCaP cells. These results suggest that SULT2B1b positively regulates the AR either through alterations in ligand availability or by interaction with critical coregulators that influence AR activity. IMPLICATIONS: These findings provide evidence that SULT2B1b is a novel regulator of AR activity and cell growth in prostate cancer and should be further investigated for therapeutic potential. Mol Cancer Res; 14(9); 776-86. ©2016 AACR.


Assuntos
Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Sulfotransferases/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ésteres do Colesterol/metabolismo , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética
5.
Biochim Biophys Acta ; 1861(8 Pt A): 730-47, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27108063

RESUMO

Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.


Assuntos
Citoplasma/metabolismo , Gorduras na Dieta/metabolismo , Enterócitos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Adsorção , Animais , Doenças Cardiovasculares/metabolismo , Quilomícrons/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Neoplasias/metabolismo , Obesidade/metabolismo
6.
Clin Exp Metastasis ; 28(8): 733-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21744083

RESUMO

We previously described a lipid-accumulating phenotype of estrogen receptor negative (ER(-)) breast cancer cells exemplified by the MDA-MB-231 and MDA-MB-436 cell lines. These cells had more lipid droplets, a higher uptake of oleic acid and LDL, a higher ratio of cholesteryl ester (CE) to triacylglycerol (TAG), and higher expression of acyl-CoA:cholesterol acyltransferase 1 (ACAT1) as compared to ER(+) MCF-7 breast cancer cells. LDL stimulated proliferation of ER-cells only, and proliferation was reduced by inhibition of ACAT. We hypothesized that storage of exogenous lipids would confer an energetic advantage. We tested this by depriving cells of exogenous lipids and measuring chemotactic migration, an energy-intensive behavior. MDA-MB-231 cells were grown for 48 h in medium with either 5% FBS or 5% lipoprotein-depleted (LD) FBS. Growth in LD medium resulted in visibly reduced lipid droplets and an 85% decrease in cell migration. Addition of LDL to the LD medium dose-dependently restored the ability to migrate in an ACAT-sensitive manner. LDL receptor (LDLR) mRNA was 12-fold higher in MDA-MB-231 cells compared to nontumorigenic ER-MCF-10A breast epithelial cells grown in LD medium. Addition of LDL to the LD medium reduced LDLR mRNA levels in MCF-10A cells only. We asked if ACAT1 activity was associated with the expression of the LDLR in MDA-MB-231 cells. LDLR mRNA in MDA-MB-231 cells was substantially reduced by inhibition of ACAT, demonstrating that high ACAT1 activity permitted higher LDLR expression. This data substantiates the association of lipid accumulation with aggressive behavior in an ER-breast cancer cell line.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/metabolismo , Movimento Celular , Colesterol/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Western Blotting , Mama/patologia , Neoplasias da Mama/genética , Células Cultivadas , Quimiotaxia , Esterificação , Feminino , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
7.
Breast Cancer Res Treat ; 122(3): 661-70, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19851860

RESUMO

The specific role of dietary fat in breast cancer progression is unclear, although a low-fat diet was associated with decreased recurrence of estrogen receptor alpha negative (ER(-)) breast cancer. ER(-) basal-like MDA-MB-231 and MDA-MB-436 breast cancer cell lines contained a greater number of cytoplasmic lipid droplets compared to luminal ER(+) MCF-7 cells. Therefore, we studied lipid storage functions in these cells. Both triacylglycerol and cholesteryl ester (CE) concentrations were higher in the ER(-) cells, but the ability to synthesize CE distinguished the two types of breast cancer cells. Higher baseline, oleic acid- and LDL-stimulated CE concentrations were found in ER(-) compared to ER(+) cells. The differences corresponded to greater mRNA and protein levels of acyl-CoA:cholesterol acyltransferase 1 (ACAT1), higher ACAT activity, higher caveolin-1 protein levels, greater LDL uptake, and lower de novo cholesterol synthesis in ER(-) cells. Human LDL stimulated proliferation of ER(-) MDA-MB-231 cells, but had little effect on proliferation of ER(+) MCF-7 cells. The functional significance of these findings was demonstrated by the observation that the ACAT inhibitor CP-113,818 reduced proliferation of breast cancer cells, and specifically reduced LDL-induced proliferation of ER(-) cells. Taken together, our studies show that a greater ability to take up, store and utilize exogenous cholesterol confers a proliferative advantage to basal-like ER(-) breast cancer cells. Differences in lipid uptake and storage capability may at least partially explain the differential effect of a low-fat diet on human breast cancer recurrence.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , LDL-Colesterol/farmacologia , Neoplasia de Células Basais/patologia , Receptores de Estrogênio/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1791(12): 1173-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19698802

RESUMO

Recently, we found that enterocytes dynamically store triglycerides (TGs) in cytoplasmic lipid droplets (CLDs) during dietary fat absorption. A dynamic pool of TG in the form of CLDs which expands and depletes relative to time post dietary fat challenge is present in the absorptive cells of the small intestine, enterocytes. To identify cellular factors which may play a role in the regulation of this dynamic process we investigated the expression and localization of a lipid droplet associated protein family, PAT proteins, in enterocytes of mice chronically and acutely challenged by dietary fat. We found that adipophilin and Tip47 are the only PAT genes present in mouse intestinal mucosa and both genes are present at higher levels after high-fat challenges. We found TIP47 protein present in the intestine from chow and high-fat challenged mice; however, adipophilin protein was only present after high-fat challenges. In addition, TIP47 protein level was higher after an acute than a chronic high-fat challenge whereas adipophilin protein level was higher after a chronic than an acute high-fat challenge. We co-imaged TG in CLDs using CARS microscopy and TIP47 or adipophilin using immunocytochemistry in isolated enterocytes from mice challenged chronically and acutely by high levels of dietary fat. TIP47, but not adipophilin, coats CLDs in enterocytes after an acute high-fat challenge suggesting that TIP47 plays a role in the synthesis of CLDs from newly synthesized TG at the beginning of the process of dietary fat absorption in enterocytes. Adipophilin, on the other hand, coats CLDs only in enterocytes of chronic high-fat fed mice suggesting that adipophilin may play a role in the stabilization of TG stored in CLDs in longer term. These results suggest distinct roles for TIP47 and adipophilin in dietary fat absorption.


Assuntos
Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Gorduras na Dieta/metabolismo , Enterócitos/metabolismo , Peptídeos/metabolismo , Triglicerídeos/metabolismo , Absorção/efeitos dos fármacos , Animais , Proteínas de Transporte/genética , Gorduras na Dieta/farmacologia , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Perilipina-2 , Perilipina-3 , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Hepatology ; 40(5): 1088-97, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15486928

RESUMO

Acyl CoA:cholesterol acyltransferase (ACAT) 2 is the major cholesterol-esterifying enzyme in mouse enterocytes and hepatocytes. Male ACAT2(+/+) and ACAT2(-/ -) mice were fed chow containing added cholesterol (0%-0.500% w/w) for 24 days. Over this range, fractional cholesterol absorption in the ACAT2(+/+) mice fell from 41.4% +/- 6.6% to 21.0% +/- 5.2%, and in their ACAT2(-/-) counterparts it fell from 35.1% +/- 4.5% to 7.9% +/- 0.8%. The mass of dietary cholesterol absorbed (mg/d per 100 g body weight) increased from 1.2 +/- 0.2 to 14.7 +/- 4.4 in the ACAT2(+/+) mice and from 1.0 +/- 0.2 to 5.5 +/- 0.6 in those without ACAT2. In the ACAT2(+/+) mice, hepatic cholesterol concentrations increased as a function of intake despite compensatory changes in cholesterol and bile acid synthesis and in the expression of adenosine triphosphate-binding cassette transporter G5 (ABCG5) and ABC transporter G8 (ABCG8). In contrast, in ACAT2(-/-) mice in which the amount of cholesterol absorbed at the highest intake was only 37% of that in the ACAT2(+/+) mice, suppression of synthesis was a sufficient adaptive response; there was no change in bile acid synthesis, ABCG5/G8 expression, or hepatic cholesterol concentration. The expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) in the jejunum was markedly elevated in the ACAT2(-/-) mice, irrespective of dietary cholesterol level. In conclusion, although ACAT2 deficiency limits cholesterol absorption, the extent to which it impacts hepatic cholesterol homeostasis depends on cholesterol intake. Loss of ACAT2 activity may result in unesterified cholesterol being absorbed via an ABCA1-mediated basolateral efflux pathway.


Assuntos
Colesterol na Dieta/farmacocinética , Colesterol/metabolismo , Homeostase , Fígado/metabolismo , Esterol O-Aciltransferase/deficiência , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Absorção , Animais , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Concentração Osmolar , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase 2
10.
J Biol Chem ; 278(51): 51664-72, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14534295

RESUMO

Liver fatty acid-binding protein (L-Fabp) is an abundant cytosolic lipid-binding protein with broad substrate specificity, expressed in mammalian enterocytes and hepatocytes. We have generated mice with a targeted deletion of the endogenous L-Fabp gene and have characterized their response to alterations in hepatic fatty acid flux following prolonged fasting. Chow-fed L-Fabp-/- mice were indistinguishable from wild-type littermates with regard to growth, serum and tissue lipid profiles, and fatty acid distribution within hepatic complex lipid species. In response to 48-h fasting, however, wild-type mice demonstrated a approximately 10-fold increase in hepatic triglyceride content while L-Fabp-/- mice demonstrated only a 2-fold increase. Hepatic VLDL secretion was decreased in L-Fabp-/- mice suggesting that the decreased accumulation of hepatic triglyceride was not the result of increased secretion. Fatty acid oxidation, as inferred from serum beta-hydroxybutyrate levels, was increased in response to fasting, although the increase in L-Fabp-/- mice was significantly reduced in comparison to wild-type controls, despite comparable induction of PPAR alpha target genes. Studies in primary hepatocytes revealed indistinguishable initial rates of oleate uptake, but longer intervals revealed reduced rates of uptake in fasted L-Fabp-/- mice. Oleate incorporation into cellular triglyceride and diacylglycerol was reduced in L-Fabp-/- mice although incorporation into phospholipid and cholesterol ester was no different than wild-type controls. These data point to an inducible defect in fatty acid utilization in fasted L-Fabp-/- mice that involves targeting of substrate for use in triglyceride metabolism.


Assuntos
Proteínas de Transporte/fisiologia , Ácidos Graxos/metabolismo , Deleção de Genes , Fígado/metabolismo , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Triglicerídeos/metabolismo , Adaptação Fisiológica , Tecido Adiposo/metabolismo , Animais , Proteínas de Transporte/genética , Jejum , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Lipoproteínas VLDL/metabolismo , Fígado/citologia , Camundongos , Camundongos Knockout , Ácido Oleico/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA