Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21630, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303891

RESUMO

Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).


Assuntos
4-Quinolonas/metabolismo , Anti-Infecciosos/metabolismo , Pseudoalteromonas/metabolismo , Pseudomonas/metabolismo , Pirróis/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , Genes Bacterianos , Biologia Marinha , Espectrometria de Massas , Hibridização de Ácido Nucleico , Filogenia , Pseudoalteromonas/classificação , Pseudoalteromonas/genética
2.
Nat Prod Rep ; 36(9): 1333-1350, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490501

RESUMO

Covering: up to 2019Humanity is in dire need for novel medicinal compounds with biological activities ranging from antibiotic to anticancer and anti-dementia effects. Recent developments in genome sequencing and mining have revealed an unappreciated potential for bioactive molecule production in marine Proteobacteria. Also, novel bioactive compounds have been discovered through molecular manipulations of either the original marine host bacteria or in heterologous hosts. Nevertheless, in contrast to the large repertoire of such molecules as predicted by in silico analysis, few marine bioactive compounds have been reported. This review summarizes the recent advances in the study of natural products from marine Proteobacteria. Here we present successful examples on genetic engineering of biosynthetic gene clusters of natural products from marine Proteobacteria. We also discuss the future prospects of discovering novel bioactive molecules via both heterologous production methodology and the development of marine Proteobacteria as new cell factories.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Metabólica , Proteobactérias/metabolismo , Organismos Aquáticos/genética , Engenharia Metabólica/métodos , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA