Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508184

RESUMO

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína
2.
Nat Commun ; 15(1): 1382, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360885

RESUMO

Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.


Assuntos
Proteínas de Ligação ao Cálcio , Chaperonas Moleculares , Fator 1 de Elongação de Peptídeos , Dobramento de Proteína , Ribossomos , Biossíntese de Proteínas , Proteostase , Ribossomos/genética , Ribossomos/metabolismo , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Chaperonas Moleculares/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
3.
J Mol Biol ; 436(14): 168484, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331212

RESUMO

The Hsp70 chaperone system is a central component of cellular protein quality control (PQC) by acting in a multitude of protein folding processes ranging from the folding of newly synthesized proteins to the disassembly and refolding of protein aggregates. This multifunctionality of Hsp70 is governed by J-domain proteins (JDPs), which act as indispensable co-chaperones that target specific substrates to Hsp70. The number of distinct JDPs present in a species always outnumbers Hsp70, documenting JDP function in functional diversification of Hsp70. In this review, we describe the physiological roles of JDPs in the Saccharomyces cerevisiae PQC system, with a focus on the abundant JDP generalists, Zuo1, Ydj1 and Sis1, which function in fundamental cellular processes. Ribosome-bound Zuo1 cooperates with the Hsp70 chaperones Ssb1/2 in folding and assembly of nascent polypeptides. Ydj1 and Sis1 cooperate with the Hsp70 members Ssa1 to Ssa4 to exert overlapping functions in protein folding and targeting of newly synthesized proteins to organelles including mitochondria and facilitating the degradation of aberrant proteins by E3 ligases. Furthermore, they act in protein disaggregation reactions, though Ydj1 and Sis1 differ in their modes of Hsp70 cooperation and substrate specificities. This results in functional specialization as seen in prion propagation and the underlying dominant role of Sis1 in targeting Hsp70 for shearing of prion amyloid fibrils.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Domínios Proteicos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
4.
Methods Enzymol ; 684: 1-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230585

RESUMO

The processing, membrane targeting and folding of newly synthesized polypeptides is closely linked to their synthesis at the ribosome. A network of enzymes, chaperones and targeting factors engages ribosome-nascent chain complexes (RNCs) to support these maturation processes. Exploring the modes of action of this machinery is critical for our understanding of functional protein biogenesis. Selective ribosome profiling (SeRP) is a powerful method for interrogating co-translational interactions of maturation factors with RNCs. It provides proteome-wide information on the factor's nascent chain interactome, the timing of factor binding and release during the progress of translation of individual nascent chain species, and the mechanisms and features controlling factor engagement. SeRP is based on the combination of two ribosome profiling (RP) experiments performed on the same cell population. In one experiment the ribosome-protected mRNA footprints of all translating ribosomes of the cell are sequenced (total translatome), while the other experiment detects only the ribosome footprints of the subpopulation of ribosomes engaged by the factor of interest (selected translatome). The codon-specific ratio of ribosome footprint densities from selected over total translatome reports on the factor enrichment at specific nascent chains. In this chapter, we provide a detailed SeRP protocol for mammalian cells. The protocol includes instructions on cell growth and cell harvest, stabilization of factor-RNC interactions, nuclease digest and purification of (factor-engaged) monosomes, as well as preparation of cDNA libraries from ribosome footprint fragments and deep sequencing data analysis. Purification protocols of factor-engaged monosomes and experimental results are exemplified for the human ribosomal tunnel exit-binding factor Ebp1 and chaperone Hsp90, but the protocols are readily adaptable to other co-translationally acting mammalian factors.


Assuntos
Perfil de Ribossomos , Ribossomos , Animais , Humanos , Ribossomos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptídeos/química , Sequência de Bases , Biossíntese de Proteínas , Mamíferos/genética
5.
Nature ; 603(7901): 509-514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264791

RESUMO

Ribosome stalling during translation is detrimental to cellular fitness, but how this is sensed and elicits recycling of ribosomal subunits and quality control of associated mRNA and incomplete nascent chains is poorly understood1,2. Here we uncover Bacillus subtilis MutS2, a member of the conserved MutS family of ATPases that function in DNA mismatch repair3, as an unexpected ribosome-binding protein with an essential function in translational quality control. Cryo-electron microscopy analysis of affinity-purified native complexes shows that MutS2 functions in sensing collisions between stalled and translating ribosomes and suggests how ribosome collisions can serve as platforms to deploy downstream processes: MutS2 has an RNA endonuclease small MutS-related (SMR) domain, as well as an ATPase/clamp domain that is properly positioned to promote ribosomal subunit dissociation, which is a requirement both for ribosome recycling and for initiation of ribosome-associated protein quality control (RQC). Accordingly, MutS2 promotes nascent chain modification with alanine-tail degrons-an early step in RQC-in an ATPase domain-dependent manner. The relevance of these observations is underscored by evidence of strong co-occurrence of MutS2 and RQC genes across bacterial phyla. Overall, the findings demonstrate a deeply conserved role for ribosome collisions in mounting a complex response to the interruption of translation within open reading frames.


Assuntos
Adenosina Trifosfatases , Ribossomos , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Microscopia Crioeletrônica , Reparo do DNA , Biossíntese de Proteínas , Proteínas/metabolismo , Ribossomos/metabolismo
6.
Nature ; 587(7834): 483-488, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177717

RESUMO

The deposition of highly ordered fibrillar-type aggregates into inclusion bodies is a hallmark of neurodegenerative diseases such as Parkinson's disease. The high stability of such amyloid fibril aggregates makes them challenging substrates for the cellular protein quality-control machinery1,2. However, the human HSP70 chaperone and its co-chaperones DNAJB1 and HSP110 can dissolve preformed fibrils of the Parkinson's disease-linked presynaptic protein α-synuclein in vitro3,4. The underlying mechanisms of this unique activity remain poorly understood. Here we use biochemical tools and nuclear magnetic resonance spectroscopy to determine the crucial steps of the disaggregation process of amyloid fibrils. We find that DNAJB1 specifically recognizes the oligomeric form of α-synuclein via multivalent interactions, and selectively targets HSP70 to fibrils. HSP70 and DNAJB1 interact with the fibril through exposed, flexible amino and carboxy termini of α-synuclein rather than the amyloid core itself. The synergistic action of DNAJB1 and HSP110 strongly accelerates disaggregation by facilitating the loading of several HSP70 molecules in a densely packed arrangement at the fibril surface, which is ideal for the generation of 'entropic pulling' forces. The cooperation of DNAJB1 and HSP110 in amyloid disaggregation goes beyond the classical substrate targeting and recycling functions that are attributed to these HSP70 co-chaperones and constitutes an active and essential contribution to the remodelling of the amyloid substrate. These mechanistic insights into the essential prerequisites for amyloid disaggregation may provide a basis for new therapeutic interventions in neurodegeneration.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Entropia , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/análise , Humanos , Hidrólise , Modelos Biológicos , Doença de Parkinson/metabolismo
7.
Nat Commun ; 11(1): 4676, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938922

RESUMO

Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.


Assuntos
Fator 4 Ativador da Transcrição/genética , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Códon , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Neoplasias/genética , Proteínas Oncogênicas/genética , Oncogenes , Fases de Leitura Aberta , RNA Mensageiro , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética
8.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284329

RESUMO

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Homeodomínio/química , Agregação Patológica de Proteínas , Superóxido Dismutase-1/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação de Sentido Incorreto , Superóxido Dismutase-1/genética , Proteínas Supressoras de Tumor/genética
9.
Nature ; 578(7796): E23, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32034316

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nature ; 578(7794): 317-320, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31996849

RESUMO

The ability to reverse protein aggregation is vital to cells1,2. Hsp100 disaggregases such as ClpB and Hsp104 are proposed to catalyse this reaction by translocating polypeptide loops through their central pore3,4. This model of disaggregation is appealing, as it could explain how polypeptides entangled within aggregates can be extracted and subsequently refolded with the assistance of Hsp704,5. However, the model is also controversial, as the necessary motor activity has not been identified6-8 and recent findings indicate non-processive mechanisms such as entropic pulling or Brownian ratcheting9,10. How loop formation would be accomplished is also obscure. Indeed, cryo-electron microscopy studies consistently show single polypeptide strands in the Hsp100 pore11,12. Here, by following individual ClpB-substrate complexes in real time, we unambiguously demonstrate processive translocation of looped polypeptides. We integrate optical tweezers with fluorescent-particle tracking to show that ClpB translocates both arms of the loop simultaneously and switches to single-arm translocation when encountering obstacles. ClpB is notably powerful and rapid; it exerts forces of more than 50 pN at speeds of more than 500 residues per second in bursts of up to 28 residues. Remarkably, substrates refold while exiting the pore, analogous to co-translational folding. Our findings have implications for protein-processing phenomena including ubiquitin-mediated remodelling by Cdc48 (or its mammalian orthologue p97)13 and degradation by the 26S proteasome14.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Agregados Proteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Fluorescência , Proteínas de Choque Térmico/química , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pinças Ópticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Redobramento de Proteína , Ubiquitina/metabolismo
11.
Cell Stem Cell ; 25(2): 241-257.e8, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303549

RESUMO

Brain tumor stem cells (BTSCs) are a chemoresistant population that can drive tumor growth and relapse, but the lack of BTSC-specific markers prevents selective targeting that spares resident stem cells. Through a ribosome-profiling analysis of mouse neural stem cells (NSCs) and BTSCs, we find glycerol-3-phosphate dehydrogenase 1 (GPD1) expression specifically in BTSCs and not in NSCs. GPD1 expression is present in the dormant BTSC population, which is enriched at tumor borders and drives tumor relapse after chemotherapy. GPD1 inhibition prolongs survival in mouse models of glioblastoma in part through altering cellular metabolism and protein translation, compromising BTSC maintenance. Metabolomic and lipidomic analyses confirm that GPD1+ BTSCs have a profile distinct from that of NSCs, which is dependent on GPD1 expression. Similar GPD1 expression patterns and prognostic associations are observed in human gliomas. This study provides an attractive therapeutic target for treating brain tumors and new insights into mechanisms regulating BTSC dormancy.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/patologia , Glicerolfosfato Desidrogenase/genética , Humanos , Metaboloma , Camundongos , Recidiva , Células Tumorais Cultivadas
12.
Nat Rev Mol Cell Biol ; 20(11): 665-680, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31253954

RESUMO

The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Dobramento de Proteína , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Domínios Proteicos
13.
Elife ; 82019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246174

RESUMO

In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA binds ribosomes and recognises nascent substrate proteins, but the molecular mechanism of nascent substrate recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Translocação Bacteriana , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas SecA/química , Proteínas SecA/metabolismo , Sequência de Aminoácidos , Biocatálise , Reagentes de Ligações Cruzadas/química , Evolução Molecular , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ribossomos/metabolismo , Especificidade por Substrato
14.
Cell Rep ; 27(12): 3433-3446.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216466

RESUMO

AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities. Coiled-coil M-domains repress ClpB activity by encircling the AAA1 ring. Here, we determine the mechanism of ClpB activation by comparing ATPase mechanisms and cryo-EM structures of ClpB wild-type and a constitutively active ClpB M-domain mutant. We show that ClpB activation reduces ATPase cooperativity and induces a sequential mode of ATP hydrolysis in the AAA2 ring, the main ATPase motor. AAA1 and AAA2 rings do not work synchronously but in alternating cycles. This ensures high grip, enabling substrate threading via a processive, rope-climbing mechanism.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Domínio AAA/genética , ATPases Associadas a Diversas Atividades Celulares/química , Microscopia Crioeletrônica , Endopeptidase Clp/genética , Endopeptidase Clp/ultraestrutura , Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/ultraestrutura , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos/genética
15.
Annu Rev Microbiol ; 73: 89-110, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31091419

RESUMO

Small heat shock proteins (sHsps) constitute a diverse chaperone family that shares the α-crystallin domain, which is flanked by variable, disordered N- and C-terminal extensions. sHsps act as the first line of cellular defense against protein unfolding stress. They form dynamic, large oligomers that represent inactive storage forms. Stress conditions cause a rapid increase in cellular sHsp levels and trigger conformational rearrangements, resulting in exposure of substrate-binding sites and sHsp activation. sHsps bind to early-unfolding intermediates of misfolding proteins in an ATP-independent manner and sequester them in sHsp/substrate complexes. Sequestration protects substrates from further uncontrolled aggregation and facilitates their refolding by ATP-dependent Hsp70-Hsp100 disaggregases. Some sHsps with particularly strong sequestrase activity, such as yeast Hsp42, are critical factors for forming large, microscopically visible deposition sites of misfolded proteins in vivo. These sites are organizing centers for triaging substrates to distinct quality control pathways, preferentially Hsp70-dependent refolding and selective autophagy.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Dobramento de Proteína , Temperatura Alta , Multimerização Proteica , Estresse Fisiológico
16.
Annu Rev Biochem ; 88: 337-364, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30508494

RESUMO

The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.


Assuntos
Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Ribossomos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Eucariotos/genética , Eucariotos/metabolismo
17.
Nature ; 561(7722): 268-272, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158700

RESUMO

The folding of newly synthesized proteins to the native state is a major challenge within the crowded cellular environment, as non-productive interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by coupling synthesis with polypeptide folding and by using molecular chaperones to safeguard folding cotranslationally2. However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of folding: the assembly of polypeptides into complexes. In prokaryotes, a proof-of-concept study showed that the assembly of heterodimeric luciferase is an organized cotranslational process that is facilitated by spatially confined translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental differences-such as the rarity of polycistronic mRNAs and different chaperone constellations-raise the question of whether assembly is also coordinated with translation. Here we provide a systematic and mechanistic analysis of the assembly of protein complexes in eukaryotes using ribosome profiling. We determined the in vivo interactions of the nascent subunits from twelve hetero-oligomeric protein complexes of Saccharomyces cerevisiae at near-residue resolution. We find nine complexes assemble cotranslationally; the three complexes that do not show cotranslational interactions are regulated by dedicated assembly chaperones5-7. Cotranslational assembly often occurs uni-directionally, with one fully synthesized subunit engaging its nascent partner subunit, thereby counteracting its propensity for aggregation. The onset of cotranslational subunit association coincides directly with the full exposure of the nascent interaction domain at the ribosomal tunnel exit. The action of the ribosome-associated Hsp70 chaperone Ssb8 is coordinated with assembly. Ssb transiently engages partially synthesized interaction domains and then dissociates before the onset of partner subunit association, presumably to prevent premature assembly interactions. Our study shows that cotranslational subunit association is a prevalent mechanism for the assembly of hetero-oligomers in yeast and indicates that translation, folding and the assembly of protein complexes are integrated processes in eukaryotes.


Assuntos
Aminoacil-tRNA Sintetases/biossíntese , Ácido Graxo Sintases/biossíntese , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Methods Mol Biol ; 1709: 179-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177659

RESUMO

The ATPase cycle of Hsp70 chaperones controls their transient association with substrates and thus governs their function in protein folding. Nucleotide exchange factors (NEFs) accelerate ADP release from Hsp70, which results in rebinding of ATP and release of the substrate, thereby regulating the lifetime of the Hsp70-substrate complex. This chapter describes several methods suitable to study NEFs of Hsp70 chaperones. On the one hand, steady-state ATPase assays provide information on how the NEF influences progression of the Hsp70 through the entire ATPase cycle. On the other hand, nucleotide release can be measured directly using labeled nucleotides, which enables identification and further characterization of NEFs.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biologia Molecular/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos
19.
Sci Adv ; 3(8): e1701726, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798962

RESUMO

Refolding aggregated proteins is essential in combating cellular proteotoxic stress. Together with Hsp70, Hsp100 chaperones, including Escherichia coli ClpB, form a powerful disaggregation machine that threads aggregated polypeptides through the central pore of tandem adenosine triphosphatase (ATPase) rings. To visualize protein disaggregation, we determined cryo-electron microscopy structures of inactive and substrate-bound ClpB in the presence of adenosine 5'-O-(3-thiotriphosphate), revealing closed AAA+ rings with a pronounced seam. In the substrate-free state, a marked gradient of resolution, likely corresponding to mobility, spans across the AAA+ rings with a dynamic hotspot at the seam. On the seam side, the coiled-coil regulatory domains are locked in a horizontal, inactive orientation. On the opposite side, the regulatory domains are accessible for Hsp70 binding, substrate targeting, and activation. In the presence of the model substrate casein, the polypeptide threads through the entire pore channel and increased nucleotide occupancy correlates with higher ATPase activity. Substrate-induced domain displacements indicate a pathway of regulated substrate transfer from Hsp70 to the ClpB pore, inside which a spiral of loops contacts the substrate. The seam pore loops undergo marked displacements, along with ordering of the regulatory domains. These asymmetric movements suggest a mechanism for ATPase activation and substrate threading during disaggregation.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Regiões Promotoras Genéticas , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Cell ; 170(2): 298-311.e20, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28708998

RESUMO

The yeast Hsp70 chaperone Ssb interacts with ribosomes and nascent polypeptides to assist protein folding. To reveal its working principle, we determined the nascent chain-binding pattern of Ssb at near-residue resolution by in vivo selective ribosome profiling. Ssb associates broadly with cytosolic, nuclear, and hitherto unknown substrate classes of mitochondrial and endoplasmic reticulum (ER) nascent proteins, supporting its general chaperone function. Ssb engages most substrates by multiple binding-release cycles to a degenerate sequence enriched in positively charged and aromatic amino acids. Timely association with this motif upon emergence at the ribosomal tunnel exit requires ribosome-associated complex (RAC) but not nascent polypeptide-associated complex (NAC). Ribosome footprint densities along orfs reveal faster translation at times of Ssb binding, mainly imposed by biases in mRNA secondary structure, codon usage, and Ssb action. Ssb thus employs substrate-tailored dynamic nascent chain associations to coordinate co-translational protein folding, facilitate accelerated translation, and support membrane targeting of organellar proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA