Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mutat Res ; 828: 111856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520879

RESUMO

Lung cancer is the one of the most prevalent cancer in the world. It kills more people from cancer than any other cause and is especially common in underdeveloped nations. With 1.2 million instances, it is also the most prevalent cancer in men worldwide, making about 16.7% of the total cancer burden. Surgery is the main form of curative treatment for early-stage lung cancer. However, the majority of patients had incurable advanced non-small cell lung cancer (NSCLC) recurrence after curative purpose surgery, which is indicative of the aggressiveness of the illness and the dismal outlook. The gold standard of treatment for NSCLC patients includes drug targeting of specific mutated genes drive in development of lung cancer. Furthermore, patients with advanced NSCLC and those with early-stage illness needing adjuvant therapy should use cisplatin as it is the more active platinum drug. So, this review encompasses the non-small cell lung cancer microenvironment, treatment approaches, and use of cisplatin as a first-line regimen for NSCLC, its mechanism of action, cisplatin resistance in NSCLC and also the prevention strategies to revert the drug resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Terapia de Alvo Molecular
2.
Drug Dev Ind Pharm ; : 1-14, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451066

RESUMO

OBJECTIVES: This study aimed to develop, optimize and evaluate glyceryl monooleate (GMO) based cubosomes as a drug delivery system containing cisplatin for treatment of human lung carcinoma. SIGNIFICANCE: The significance of this research was to successfully incorporate slightly water soluble and potent anticancer drug (cisplatin) into cubosomes, which provide slow and sustained release of drug for longer period of time. METHODS: The delivery system was developed through top-down approach by melting GMO and poloxamer 407 (P407) at 70 °C and then drop-wise addition of warm deionized water (70 °C) containing cisplatin. The formulation then exposed to probe sonicator for about 2 min. A randomized regular two level full factorial design with help of Design Expert was used for optimization of blank cubosomal formulations. Cisplatin loaded cubosomes were then subjected to physico-chemical characterization. RESULTS: The characterization of the formulation revealed that it had a sufficient surface charge of -9.56 ± 1.33 mV, 168.25 ± 5.73 nm particle size, and 60.64 ± 0.11% encapsulation efficiency. The in vitro release of cisplatin from the cubosomes at pH 7.4 was observed to be sustained, with 94.5% of the drug being released in 30 h. In contrast, 99% of cisplatin was released from the drug solution in just 1.5 h. In vitro cytotoxicity assay was conducted on the human lung carcinoma NCI-H226 cell line, the cytotoxicity of cisplatin-loaded cubosomes was relative to that of pure cisplatin solution, while blank (without cisplatin) cubosomes were nontoxic. CONCLUSIONS: The obtained results demonstrated the successful development of cubosomes for sustained delivery of cisplatin.


Cubosomes were prepared, optimized, and evaluated for cisplatin delivery.A randomized regular two level full factorial design was constructed to optimize blank cubosomes.Blank cubosomes consisted of GMO as the lipid and P407 as an emulsifying agent.In vitro release studies demonstrated sustained release of cisplatin from cubosomes at pH 7.4.Cytotoxicity assay on human lung carcinoma cell line NCI-H226 showed similar cytotoxicity between cisplatin-loaded cubosomes and pure cisplatin solution while blank cubosomes exhibited no toxicity.

3.
RSC Adv ; 13(40): 28139-28147, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37753394

RESUMO

Applying a multistep approach, novel indolin-2-ones (IND) that possess an arylidene motif have been synthesized. Eight compounds were chosen for different biological tests (antimicrobial and cytotoxicity). IND containing 2-thienyl (4h) fragment have been found to exhibit good antimicrobial activity against B. cereus. Molecules that have 3-aminophenyl (4d) or 2-pyridyl (4g) groups have shown the best antifungal activities against all tested fungi. These compounds have also been noticed as promising pharmaceuticals against MCF-7 cancer cell lines. Experimental outcomes from the investigation of the interaction of 4d with DNA implied its moderate binding to DNA (KSV = 1.35 × 104 and 3.05 × 104 M-1 for EB and Hoechst binder, respectively). However, considerably stronger binding of 4d to BSA has been evidenced (Ka = 6.1 × 106 M-1). In summary, IND that contains m-aminobenzylidene fragment (4d) exhibits a good dual biological activity making it a promising candidate for further investigation in the drug discovery sector.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259425

RESUMO

In the presented study, eight novel Meldrum's acid derivatives containing various vanillic groups were synthesized. Vanillidene Meldrum's acid compounds were tested against different cancer cell lines and microbes. Out of nine, three showed very good biological activity against E. coli, and HeLa and A549 cell lines. It is shown that the O-alkyl substituted derivatives possessed better antimicrobial and anticancer activities in comparison with the O-acyl ones. The decyl substituted molecule (3i) has the highest activity against E. coli (MIC = 12.4 µM) and cancer cell lines (HeLa, A549, and LS174 = 15.7, 21.8, and 30.5 µM, respectively). The selectivity index of 3i is 4.8 (HeLa). The molecular docking study indicates that compound 3i showed good binding affinity to DNA, E. coli Gyrase B, and topoisomerase II beta. The covalent docking showed that 3i was a Michael acceptor for the nucleophiles Lys and Ser. The best Eb was noted for the topoisomerase II beta-LYS482-3i cluster.

5.
Bioorg Chem ; 133: 106404, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812829

RESUMO

New phthalazone tethered 1,2,3-triazole derivatives 12-21 were synthesized utilizing the Cu(I)-catalyzed click reactions of alkyne-functionalized phthalazone 1 with functionalized azides 2-11. The new phthalazone-1,2,3-triazoles structures 12-21 were confirmed by different spectroscopic tools, like IR; 1H, 13C, 2D HMBC and 2D ROESY NMR; EI MS, and elemental analysis. The antiproliferative efficacy of the molecular hybrids 12-21 against four cancer cell lines was evaluated, including colorectal cancer, hepatoblastoma, prostate cancer, breast adenocarcinoma, and the normal cell line WI38. The antiproliferative assessment of derivatives 12-21 showed potent activity of compounds 16, 18, and 21 compared to the anticancer drug doxorubicin. Compound 16 showed selectivity (SI) towardthe tested cell lines ranging from 3.35 to 8.84 when compared to Dox., that showed SI ranged from 0.75 to 1.61. Derivatives 16, 18 and 21 were assessed towards VEGFR-2 inhibitory activity and result in that derivative 16 showed the potent activity (IC50 = 0.123 µM) in comparison with sorafenib (IC50 = 0.116 µM). Compound 16 caused an interference with the cell cycle distribution of MCF7 and increased the percentage of cells in S phase by 1.37-fold. In silico molecular docking of the effective derivatives 16, 18, and 21 against vascular endothelial growth factor receptor-2 (VEGFR-2) confirmed the formation of stable protein-ligand interactions within the pocket.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679148

RESUMO

Covalent organic frameworks (COFs), synthesized from organic monomers, are porous crystalline polymers. Monomers get attached through strong covalent bonds to form 2D and 3D structures. The adjustable pore size, high stability (chemical and thermal), and metal-free nature of COFs make their applications wider. This review article briefly elaborates the synthesis, types, and applications (catalysis, environmental Remediation, sensors) of COFs. Furthermore, the applications of COFs as biomaterials are comprehensively discussed. There are several reported COFs having good results in anti-cancer and anti-bacterial treatments. At the end, some newly reported COFs having anti-viral and wound healing properties are also discussed.

7.
J Enzyme Inhib Med Chem ; 38(1): 2166036, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36691927

RESUMO

A new series of 2-aminobenzothiazole hybrids linked to thiazolidine-2,4-dione 4a-e, 1,3,4-thiadiazole aryl urea 6a-d, and cyanothiouracil moieties 8a-d was synthesised. The in vitro antitumor effect of the new hybrids was assessed against three cancer cell lines, namely, HCT-116, HEPG-2, and MCF-7 using Sorafenib (SOR) as a standard drug. Among the tested compounds, 4a was the most potent showing IC50 of 5.61, 7.92, and 3.84 µM, respectively. Furthermore, compounds 4e and 8a proved to have strong impact on breast cancer cell line with IC50 of 6.11 and 10.86 µM, respectively. The three compounds showed a good safety profile towards normal WI-38 cells. Flow cytometric analysis of the three compounds in MCF-7 cells revealed that compounds 4a and 4c inhibited cell population in the S phase, whereas 8a inhibited the population in the G1/S phase. The most promising compounds were subjected to a VEGFR-2 inhibitory assay where 4a emerged as the best active inhibitor of VEGFR-2 with IC50 91 nM, compared to 53 nM for SOR. In silico analysis showed that the three new hybrids succeeded to link to the active site like the co-crystallized inhibitor SOR.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Mini Rev Med Chem ; 23(1): 3-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546775

RESUMO

BACKGROUND: Benzocycloheptanone is the main structural feature of numerous famous natural pharmacophores such as Colchicine and Theaflavins. It has gained popularity in the field of medicinal chemistry, attributing to its broad-spectrum effect. OBJECTIVE: Numerous research publications addressing the derivatization of the benzosuberone molecule have been published, and their biological and pharmacological features have been extensively addressed. Numerous derivatives have been discovered as lead compounds for the development of novel medications. Thus, the goal of this article is to summarize and analyze all published findings on the synthesis and biological assessment of the benzosuberone skeleton. METHODS: All main databases including SciFinder, PubMed and google scholar were used with appropriate keywords to select related reported literature, and further bibliography in related literature was also used to find linked reports. RESULTS: Synthetic routes to benzosuberone-based ring systems were identified from the literature and explained stepwise and after this, pharmacological activities of all benzosuberone derivatives are listed target-wise and a detailed structure-activity relationship is developed. CONCLUSION: The current review discusses numerous synthetic approaches for the synthesis of benzosuberone skeleton and its applications in many domains of medical chemistry. Compounds possessing the benzosuberone skeleton play an important role in the drug development process due to their wide range of biological actions such as anti-cancer, antibacterial, antifungal, antiinflammatory, and so on. The results of antibacterial screening and Structure-Activity Relationship (SAR) revealed that the compounds containing this skeleton with the piperazine and morpholine rings have antimicrobial potential when compared to the commercial antibiotic Norfloxacin. Despite extensive study to date, there is still room for the development of novel and efficient pharmacophores using the structure-based drug design technique.


Assuntos
Cumarínicos , Esqueleto , Compostos Radiofarmacêuticos , Antibacterianos/farmacologia
9.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422546

RESUMO

A new series of indoline-2-one derivatives was designed and synthesized based on the essential pharmacophoric features of VEGFR-2 inhibitors. Anti-proliferative activities were assessed for all derivatives against breast (MCF-7) and liver (HepG2) cancer cell lines, using sunitinib as a reference agent. The most potent anti-proliferative derivatives were evaluated for their VEGFR-2 inhibition activity. The effects of the most potent inhibitor, 17a, on cell cycle, apoptosis, and expression of apoptotic markers (caspase-3&-9, BAX, and Bcl-2) were studied. Molecular modeling studies, such as docking simulations, physicochemical properties prediction, and pharmacokinetic profiling were performed. The results revealed that derivatives 5b, 10e, 10g, 15a, and 17a exhibited potent anticancer activities with IC50 values from 0.74-4.62 µM against MCF-7 cell line (sunitinib IC50 = 4.77 µM) and from 1.13-8.81 µM against HepG2 cell line (sunitinib IC50 = 2.23 µM). Furthermore, these compounds displayed potent VEGFR-2 inhibitory activities with IC50 values of 0.160, 0.358, 0.087, 0.180, and 0.078 µM, respectively (sunitinib IC50 = 0.139 µM). Cell cycle analysis demonstrated the ability of 17a to induce a cell cycle arrest of the HepG2 cells at the S phase and increase the total apoptosis by 3.5-fold. Moreover, 17a upregulated the expression levels of apoptotic markers caspase-3 and -9 by 6.9-fold and 3.7-fold, respectively. In addition, 17a increased the expression level of BAX by 2.7-fold while decreasing the expression level of Bcl-2 by 1.9-fold. The molecular docking simulations displayed enhanced binding interactions and similar placement as sunitinib inside the active pocket of VEGFR-2. The molecular modeling calculations showed that all the test compounds were in accordance with Lipinski and Veber rules for oral bioavailability and had promising drug-likeness behavior.

10.
Front Aging Neurosci ; 14: 878276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072483

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain that manifests as dementia, disorientation, difficulty in speech, and progressive cognitive and behavioral impairment. The emerging therapeutic approach to AD management is the inhibition of ß-site APP cleaving enzyme-1 (BACE1), known to be one of the two aspartyl proteases that cleave ß-amyloid precursor protein (APP). Studies confirmed the association of high BACE1 activity with the proficiency in the formation of ß-amyloid-containing neurotic plaques, the characteristics of AD. Only a few FDA-approved BACE1 inhibitors are available in the market, but their adverse off-target effects limit their usage. In this paper, we have used both ligand-based and target-based approaches for drug design. The QSAR study entails creating a multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model using 552 molecules with acceptable statistical performance (R 2 = 0.82, Q 2 loo = 0.81). According to the QSAR study, the activity has a strong link with various atoms such as aromatic carbons and ring Sulfur, acceptor atoms, sp2-hybridized oxygen, etc. Following that, a database of 26,467 food compounds was primarily used for QSAR-based virtual screening accompanied by the application of the Lipinski rule of five; the elimination of duplicates, salts, and metal derivatives resulted in a truncated dataset of 8,453 molecules. The molecular descriptor was calculated and a well-validated 6-parametric version of the QSAR model was used to predict the bioactivity of the 8,453 food compounds. Following this, the food compounds whose predicted activity (pKi) was observed above 7.0 M were further docked into the BACE1 receptor which gave rise to the Identification of 4-(3,4-Dihydroxyphenyl)-2-hydroxy-1H-phenalen-1-one (PubChem I.D: 4468; Food I.D: FDB017657) as a hit molecule (Binding Affinity = -8.9 kcal/mol, pKi = 7.97 nM, Ki = 10.715 M). Furthermore, molecular dynamics simulation for 150 ns and molecular mechanics generalized born and surface area (MMGBSA) study aided in identifying structural motifs involved in interactions with the BACE1 enzyme. Molecular docking and QSAR yielded complementary and congruent results. The validated analyses can be used to improve a drug/lead candidate's inhibitory efficacy against the BACE1. Thus, our approach is expected to widen the field of study of repurposing nutraceuticals into neuroprotective as well as anti-cancer and anti-viral therapeutic interventions.

11.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745081

RESUMO

A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 µM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.


Assuntos
Amidas , Antineoplásicos , Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Relação Estrutura-Atividade
12.
Pharmaceuticals (Basel) ; 15(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35745599

RESUMO

A series of novel Schiff bases-based TMP moieties have been designed and synthesized as potential anticancer agents. The target Schiff bases were screened for their cytotoxic activity against the MDA-MB-231 breast cancer cell line. Most of the tested molecules revealed good cytotoxic activity, especially compounds 4h, 4j and 5d. Being the most potent, compound 4h showed good tubulin polymerization inhibition activity as revealed by immunofluorescence analysis and ELISA assay. Additionally, compound 4h was screened for cell cycle disturbance and apoptosis induction. Pre-G1 apoptosis and cell growth halt at the G2/M phase were discovered to be caused by it. Moreover, compound 4h induced apoptosis via p53 and Bax activation, as well as reduced the level of Bcl-2. Additionally, the most potent compound 4h was lodged on nanostructured lipid carriers (NLCs). 23 full factorial design was involved to govern the influence of the fabrication variables on the in vitro characters of the casted NLCs. F3 was picked as the optimum formula exhibiting dominant desirability value 0.805, EE% 95.6 ± 2.4, PS 222.4 ±18.7, PDI 0.23 ± 0.05 and ZP −39.2 ± 3.9 Mv. Furthermore, F3 affirmed improved solubility and release over the drug suspension. In the comparative cytotoxic activity, F3 was capable of diminishing the IC50 by around 2.15 times for pure 4h, while nearly close to the IC50 of the reference drug. Thus, NLCs could be a potential platform for boosted antitumor activity.

13.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631561

RESUMO

The continuing growth of bacterial resistance makes the top challenge for the healthcare system especially in bone-infections treatment. Current estimates reveal that in 2050 the death ratio caused by bacterial infections can be higher than cancer. The aim of this study is to provide an alternative to currently available bone-infection treatments. Here we designed mesoporous hydroxyapatite nanocarriers functionalized with citrate (Ctr-mpHANCs). Amoxicillin (AMX) is used as a model drug to load in Ctr-mpHANCs, and the drug loading was more than 90% due to the porous nature of nanocarriers. Scanning electron microscopy shows the roughly spherical morphology of nanocarriers, and the DLS study showed the approximate size of 92 nm. The Brunauer-Emmett-Teller (BET) specific surface area and pore diameter was found to be about 182.35 m2/g and 4.2 nm, respectively. We noticed that almost 100% of the drug is released from the AMX loaded Ctr-mpHANCs (AMX@Ctr-mpHANCs) in a pH-dependent manner within 3 d and 5 d at pH 2.0 and 4.5, respectively. The sustained drug release behaviour was observed for 15 d at pH 7.4 and no RBCs hemolysis by AMX@Ctr-mpHANCs. The broth dilution and colony forming unit (CFU) assays were used to determine the antimicrobial potential of AMX@Ctr-mpHANCs. It was observed in both studies that AMX@Ctr-mpHANCs showed a significant reduction in the bacterial growth of S. aureus, E. coli, and P. aeruginosa as compared to Ctr-mpHANCs with no bacteria-killing. Thus, we proposed that Ctr-mpHANCs can be used as a drug carrier and a treatment option for bone infections caused by bacteria.

14.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458804

RESUMO

New furan-based derivatives have been, designed, synthesized, and evaluated for their cytotoxic and tubulin polymerization inhibitory activities. DNA flow cytometric study of pyridine carbohydrazide 4 and N-phenyl triazinone 7 demonstrated G2/M phase cell cycle disruptions. Accumulation of cells in the pre-G1 phase and positive annexin V/PI staining, which may be caused by degeneration or fragmentation of the genetic components, suggested that cell death occurs via an apoptotic cascade. Furthermore, compounds 4 and 7 had a strong pro-apoptotic impact through inducing the intrinsic mitochondrial mechanism of apoptosis. This mechanistic route was verified by an ELISA experiment that indicated a considerable rise in the levels of p53 and Bax and a drop in the level of Bcl-2 when compared with the control.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Furanos , Relação Estrutura-Atividade
15.
Pharmaceutics ; 14(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456698

RESUMO

A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.

16.
RSC Adv ; 12(17): 10307-10320, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35424971

RESUMO

Complex illnesses, such as cancer, are often caused by many disorders, gene mutations, or pathways. Biological pathways play a significant part in the development of these diseases. Multi-target directed ligands (MTDLs) have been used by medicinal chemists recently in an effort to find single molecules that can affect many targets concurrently. In this work, several chalcones containing the ligustrazine moiety were synthesized and tested for their in vitro anticancer activity and several cancer markers, including EGFR, BRAFV600E, c-Met, and tubulin polymerization, in order to uncover multitarget bioactive compounds. In assays using multiple cancer cell lines, the majority of the compounds examined showed strong anticancer activity against them. To synthesize oximes, all of the chalcones were used as precursors. The IC50 values of two compounds (11g and 11e) were found to be 0.87, 0.28, 2.43, 1.04 µM and 11d, 1.47, 0.79, 3.8, 1.63 µM respectively, against A-375, MCF-7, HT-29 and H-460 cell lines. These IC50 values revealed an excellent antiproliferative activity compared to those of the positive control foretinib, (IC50 = 1.9, 1.15, 3.97, and 2.86 µM). Careful examination of their structure and configuration revealed that both compounds had an oxime functional group with z configuration, in place of carbonyl functional group, along with a 2-phenyl thiophenyl moiety with or without a bromo group at position-5. The possible binding pattern was implied by docking simulation, inferring the possibility of introducing interactions with the nearby tubulin chain. Since the novel structural trial has been conducted with a detailed structure activity relationship discussion, this work might stimulate new ideas in further modification of multitarget anti-cancer agents and therapeutic approaches.

17.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35337101

RESUMO

Cancer is a major life-threatening disease with a high mortality rate in many countries. Even though different therapies and options are available, patients generally prefer chemotherapy. However, serious side effects of anti-cancer drugs compel us to search for a safer drug. To achieve this target, Hsp90 (heat shock protein 90), which is responsible for stabilization of many oncoproteins in cancer cells, is a promising target for developing an anti-cancer drug. The QSAR (Quantitative Structure-Activity Relationship) could be useful to identify crucial pharmacophoric features to develop a Hsp90 inhibitor. Therefore, in the present work, a larger dataset encompassing 1141 diverse compounds was used to develop a multi-linear QSAR model with a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The new developed six-parameter model satisfies the recommended values for a good number of validation parameters such as R2tr = 0.78, Q2LMO = 0.77, R2ex = 0.78, and CCCex = 0.88. The present analysis reveals that the Hsp90 inhibitory activity is correlated with different types of nitrogen atoms and other hidden structural features such as the presence of hydrophobic ring/aromatic carbon atoms within a specific distance from the center of mass of the molecule, etc. Thus, the model successfully identified a variety of reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with Hsp90.

18.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269867

RESUMO

The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4-254.2 nm with PDI ranging between 0.279-0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.


Assuntos
Abelmoschus , Antineoplásicos , Quitosana , Nanopartículas , Antineoplásicos/farmacologia , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Metotrexato/toxicidade , Nanopartículas/química , Tamanho da Partícula
19.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326204

RESUMO

Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer's disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aß biogenesis pathway in Alzheimer's disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.

20.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208952

RESUMO

For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7-18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.


Assuntos
Antineoplásicos , Chalconas , Inibidores de Ciclo-Oxigenase 2 , Proteínas de Neoplasias , Neoplasias , Inibidores de Proteínas Quinases , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Estrutura Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA