Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10349, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710789

RESUMO

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Assuntos
Mastite Bovina , Transplante de Células-Tronco Mesenquimais , Leite , Animais , Bovinos , Feminino , Mastite Bovina/terapia , Mastite Bovina/microbiologia , Leite/citologia , Leite/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Citocinas/metabolismo , Citocinas/sangue
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542531

RESUMO

Frequent colonization and bacterial infection of skin wounds in small animals prevent or impair their healing. However, the broadly applied antimicrobial therapy of wounds is not always necessary and promotes the spread of bacterial resistance. Thus, alternatives to antimicrobial therapy, including preventive measures in the form of wound dressings with antibiotic properties, should be searched for. The aim of this study was to develop a new, efficient, cost-effective and non-toxic formulation with antimicrobial properties to serve as an alternative to antibiotic administration in wound-healing stimulation in companion animals. Nano/microencapsulated ozonated olive oil in a hyaluronan matrix was developed, with ozone concentration high enough to prevent bacterial growth. The presence and size of nano- and microcapsules were determined with scanning electron microscopy (SEM). Antibacterial activity of developed formulations was examined in vitro on 101 Gram-positive and Gram-negative bacteria isolated from the wounds of companion animals. The highest ozone concentration in the developed formulations inhibited the growth of 40.59% bacteria. Species and genus-specific differences in reactions were observed. Enterococcus spp. proved the least susceptible while non-pathogenic Gram-positive bacteria were the most susceptible to the examined formulations. Changes in the bacterial morphology and cell structure of Psychrobacter sanguinis suspension mixed with Ca-stabilized formulations with nano/microencapsulated ozonized olive oil were revealed during SEM observations. The combination of compounds that promote wound healing (hyaluronic acid, olive oil, ozone and calcium) with the antibacterial activity of the developed formula makes it a promising bionanocomposite for use as a topical dressing.


Assuntos
Infecções Bacterianas , Ozônio , Animais , Antibacterianos/química , Azeite de Oliva/farmacologia , Animais de Estimação , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Farmacorresistência Bacteriana , Bactérias , Infecções Bacterianas/tratamento farmacológico , Ozônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA