Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797651

RESUMO

Ultra-short electron beams are used as ultra-fast radiation source for radiobiology experiments aiming at very high energy electron beams (VHEE) radiotherapy with very high dose rates. Laser plasma accelerators are capable of producing electron beams as short as 1 fs and with tunable energy from few MeV up to multi-GeV with compact footprint. This makes them an attractive source for applications in different fields, where the ultra-short (fs) duration plays an important role. The time dynamics of the dose deposited by electron beams with energies in the range 50-250 MeV have been studied and the results are presented here. The results set a quantitative limit to the maximum dose rate at which the electron beams can impart dose.


Assuntos
Elétrons , Aceleradores de Partículas , Método de Monte Carlo , Lasers , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Radiometria/métodos
2.
Sci Rep ; 7(1): 17968, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269841

RESUMO

Burst Intensification by Singularity Emitting Radiation (BISER) is proposed. Singularities in multi-stream flows of emitting media cause constructive interference of emitted travelling waves, forming extremely localized sources of bright coherent emission. Here we for the first time demonstrate this extreme localization of BISER by direct observation of nano-scale coherent x-ray sources in a laser plasma. The energy emitted into the spectral range from 60 to 100 eV is up to ~100 nJ, corresponding to ~1010 photons. Simulations reveal that these sources emit trains of attosecond x-ray pulses. Our findings establish a new class of bright laboratory sources of electromagnetic radiation. Furthermore, being applicable to travelling waves of any nature (e.g. electromagnetic, gravitational or acoustic), BISER provides a novel framework for creating new emitters and for interpreting observations in many fields of science.

3.
Phys Rev Lett ; 114(10): 105003, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815939

RESUMO

Radiation pressure acceleration is a highly efficient mechanism of laser-driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

4.
Phys Rev Lett ; 104(13): 135003, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481890

RESUMO

The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

5.
Phys Rev Lett ; 103(16): 165002, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19905702

RESUMO

An approach for accelerating ions, with the use of a cluster-gas target and an ultrashort pulse laser of 150-mJ energy and 40-fs duration, is presented. Ions with energy 10-20 MeV per nucleon having a small divergence (full angle) of 3.4 degrees are generated in the forward direction, corresponding to approximately tenfold increase in the ion energies compared to previous experiments using solid targets. It is inferred from a particle-in-cell simulation that the high energy ions are generated at the rear side of the target due to the formation of a strong dipole vortex structure in subcritical density plasmas.

6.
Phys Rev Lett ; 99(6): 065002, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930836

RESUMO

The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.

7.
Phys Rev Lett ; 89(17): 175003, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12398678

RESUMO

In order to achieve a high-quality, i.e., monoenergetic, intense ion beam, we propose the use of a double-layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The generation of high-quality proton beams from the double-layer target, irradiated by an ultraintense laser pulse, is demonstrated with three-dimensional particle-in-cell simulations.


Assuntos
Íons , Lasers , Modelos Teóricos , Aceleradores de Partículas , Radioterapia de Alta Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA