Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298151

RESUMO

Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1ß (TNF-α/IL-1) ß cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.


Assuntos
Cinnamomum zeylanicum , Doenças Inflamatórias Intestinais , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Claudina-2 , Interleucina-1beta/genética , Casca de Planta/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Expressão Gênica
2.
Foods ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765979

RESUMO

Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.

3.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164314

RESUMO

Age-related injuries are often connected to alterations in redox homeostasis. The imbalance between free radical oxygen species and endogenous antioxidants defenses could be associated with a growing risk of transient ischemic attack and stroke. In this context, a daily supply of dietary antioxidants could counteract oxidative stress occurring during ischemia/reperfusion injury (I/R), preventing brain damage. Here we investigated the potential antioxidant properties of coffee-derived circulating metabolites and a coffee pulp phytoextract, testing their efficacy as ROS scavengers in an in vitro model of ischemia. Indeed, the coffee fruit is an important source of phenolic compounds, such as chlorogenic acids, present both in the brewed seed and in the discarded pulp. Therefore, rat brain endothelial cells, subjected to oxygen and glucose deprivation (OGD) and recovery (ogR) to mimic reperfusion, were pretreated or not with coffee by-products. The results indicate that, under OGD/ogR, the ROS accumulation was reduced by coffee by-product. Additionally, the coffee extract activated the Nrf2 antioxidant pathway via Erk and Akt kinases phosphorylation, as shown by increased Nrf2 and HO-1 protein levels. The data indicate that the daily intake of coffee by-products as a dietary food supplement represents a potential nutritional strategy to counteract aging.


Assuntos
Antioxidantes/farmacologia , Coffea/química , Fator 2 Relacionado a NF-E2/agonistas , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/terapia , Animais , Antioxidantes/química , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Linhagem Celular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Extratos Vegetais/química , Ratos , Traumatismo por Reperfusão/metabolismo
4.
Antioxidants (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439417

RESUMO

The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.

5.
Stem Cells Transl Med ; 9(9): 1068-1084, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496649

RESUMO

The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC-EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple-transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine-preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC-EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC-EVs polarized in vitro murine primary microglia toward an anti-inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC-EVs through a noninvasive route and the demonstration of their anti-inflammatory efficacy might accelerate the chance of a translational exploitation of MSC-EVs in AD.


Assuntos
Doença de Alzheimer/terapia , Vesículas Extracelulares/transplante , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Administração Intranasal , Doença de Alzheimer/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Polaridade Celular , Células Cultivadas , Citocinas/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Fenótipo
6.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181746

RESUMO

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/análise , Citocromo P-450 CYP1B1/análise , Proteínas de Choque Térmico HSP70/análise , Heme Oxigenase-1/análise , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise
7.
Eur J Med Chem ; 124: 906-919, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27676470

RESUMO

Among the different classes of antibiotics, oxazolidinone derivatives represent important drugs, since their unique mechanism of action overcomes commonly diffused multidrug-resistant bacteria. Anyway, the structural similarity of these molecules to monoamino oxidase (MAO) inhibitors, like toloxatone and blefoxatone, induces in many cases loss of selectivity as a major concern. A small library of compounds based on isoxazolidinone and dehydro-ß-proline scaffold was designed with the aim to obtain antibacterial agents, evaluating at the same time the potential effects of structural features on MAO inhibitory behaviour. The structural modification introduced in the backbone, starting from Linezolid model, lead to a significant loss in antibiotic activity, while a promising inhibitory effect could be observed on monoamino oxidases. These interesting results are also in agreement with docking experiments suggesting a good binding pose of the synthesized compounds into the pocket of the oxidase enzymes, in particular of MAO-B.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Prolina/análogos & derivados , Antibacterianos/metabolismo , Domínio Catalítico , Enterococcus faecalis/efeitos dos fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Prolina/química , Prolina/metabolismo , Prolina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Toxicol Lett ; 250-251: 57-65, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27091075

RESUMO

Ultrafine particles translocate to the central nervous system and activate oxidative stress-related pathways. The transcription factor Nrf2 activation by ERK1-2 has been suggested as a key regulator of cellular response to oxidative stress. C6 glioma cells have been treated with different doses of diesel exhaust particles (25µg/ml, DEP25, and 50µg/ml, DEP50), for different times. Cells have been screened for oxidative stress and inflammatory markers, and for the activation of the MEK-ERK1-2 pathway. The same markers have been examined after inhibition of MEK, the kinase upstream to ERK1-2. 3h and 24h of DEP25 and DEP50 induced a significant increase in HO-1 levels. After 24h, DEP25 and DEP50 induced an increase in HO-1 and Cyp1b1 levels, while increase in OGG1 level was observed only with DEP25. After 5h of treatment with DEP25, ERK1-2 resulted phosphorylated, concomitantly with a significant increase in HO-1 levels, no changes in iNOS levels, and decreased levels of anti-oxidant enzymes. After treatment with MEK inhibitor U0126, ERK1-2 showed no activation, with a consequent decrease in Nrf2, no increase in HO-1 and a significant increase of iNOS. MEK inhibitor is able to deplete anti-oxidant enzymes. In conclusion, the MEK-ERK1-2 pathway is involved in regulating the anti-oxidant strategies to compensate the oxidative status induced by DEP treatment.


Assuntos
Glioma/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Transdução de Sinais/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1B1/metabolismo , DNA Glicosilases/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Glioma/patologia , Heme Oxigenase (Desciclizante)/metabolismo , Mediadores da Inflamação/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/enzimologia , Neurônios/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Fatores de Tempo
9.
Bioorg Med Chem ; 22(24): 6814-25, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25464880

RESUMO

The effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles have been studied to design new potent antibacterials against Gram-positive multidrug-resistant pathogens. The adopted strategy involved a molecular modelling approach, the synthesis and biological evaluation of new designed compounds, enantiomers separation and absolute configuration assignment. Experimental determination of the antibacterial activity of the designed (S)-1-((3-(4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea and (S)-1-((3-(3-fluoro-4-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl)-oxazolidin-2-one-5-yl)methyl)-3-methylthiourea against multidrug resistant linezolid bacterial strains was higher than that of linezolid.


Assuntos
Acetamidas/química , Antibacterianos/química , Oxidiazóis/química , Oxazolidinonas/química , Acetamidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Células Hep G2 , Humanos , Linezolida , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Oxazolidinonas/farmacologia , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo
10.
Eur J Med Chem ; 65: 533-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23811204

RESUMO

The synthesis and the in vitro antibacterial activity of novel linezolid-like oxadiazoles are reported. Replacement of the linezolid morpholine C-ring with 1,2,4-oxadiazole results in an antibacterial activity against Staphylococcus aureus both methicillin-susceptible and methicillin-resistant comparable or even superior to that of linezolid. While acetamidomethyl or thioacetoamidomethyl moieties in the C(5) side-chain are required, fluorination of the phenyl B ring exhibits a slight effect on an antibacterial activity but its presence seems to reduce the compounds cytotoxicity. Molecular modeling performed using two different approaches - FLAP and Amber software - shows that in the binding pose of the newly synthesized compounds as compared with the crystallographic pose of linezolid, the 1,2,4-oxadiazole moiety seems to perfectly mimic the function of the morpholinic ring, since the H-bond interaction with U2585 is retained.


Assuntos
Acetamidas/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxidiazóis/farmacologia , Oxazolidinonas/química , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Linezolida , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Software , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 21(17): 5233-45, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871443

RESUMO

A novel class of indole derivatives characterized by a (αE)-α-(1H-indol-3-ylmethylene)benzeneacetic acid or amide scaffold was synthesized. These derivatives, assayed for cell-growth inhibition activity against a panel of six different tumor cell lines, showed strong antiproliferative activity and selectivity mainly towards DU145 cell line. In particular, compounds 2d-m and 5 stand out for their cell growth inhibitory activity and, among them, compound 2d emerged for its selectivity towards DU145 with respect to other tested tumor cell lines. DU145 treated with 1µM of 2d for 72h showed p21(Cip1) induction and suppression of Akt signaling together with induction of Rb. From a computational point of view, two different approaches were used in order to study topology and electronic properties of the novel compounds and to shed light on their drug-likeness properties. Firstly, topological and electronic features of the compounds endowed with the most relevant biological activity were deepened; in parallel, some ADME properties like solubility and permeability were predicted.


Assuntos
Amidas/química , Antineoplásicos/química , Indóis/química , Fenilacetatos/química , Amidas/farmacocinética , Amidas/toxicidade , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Conformação Molecular , Fenilacetatos/farmacocinética , Fenilacetatos/toxicidade , Eletricidade Estática
12.
Neurochem Res ; 36(5): 863-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21287268

RESUMO

We investigated whether the toxicity of oligomeric amyloid-beta peptide (Abeta1-42) upon differentiated human neuroblastoma SH-SY5Y cells, can be affected by changes of membrane lipid composition. An immunostaining technique, using lipids extracted from the cells and separated by thin layer chromatography, suggested that Abeta preferentially binds to phosphatidylethanolamine (PE), one of the major lipids in the cell extract. For this reason, we utilized treatments with putative inhibitors of phosphatidylethanolamine biosynthesis (choline, phosphocholine, R59949) to decrease its proportion in the cell membrane; choline treatment (2.5 mM, 24 h) showed the best performance, reducing phosphatidylethanolamine content from 5.7 to 3.3 µg phosphorous/mg protein. Either the extent of Abeta binding or its toxicity decreased onto choline-treated cells. These data may open the possibility to develop future strategies aiming to reduce Abeta toxicity in Alzheimer disease.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Diferenciação Celular , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fosfatidiletanolaminas/metabolismo , Peptídeos beta-Amiloides/fisiologia , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Humanos , Neuroblastoma/patologia , Fragmentos de Peptídeos/fisiologia
13.
Mol Cell Neurosci ; 40(3): 365-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19162192

RESUMO

Amyloid-beta (Abeta), a cytotoxic fragment of Amyloid Precursor Protein (APP), has been implicated in the etiopathogenesis of Alzheimer's disease (AD). Since several neurotrophins signalling pathways may be activated in response to toxic insults, we investigated whether a similar response is triggered also by Abeta. After Abeta (25-35) peptide administration to cultured rat hippocampal neurons, the nerve growth factor (NGF) and its receptor (TrkA) mRNA expression is up-regulated. Moreover, we observe an increased cellular TrkA expression (4.5 fold) and NGF release in the culture medium (5-fold). Concomitantly, TrkA, Akt and glycogen synthase kinase 3beta (Gsk3beta) phosphorylation significantly increase. Interestingly, when cells were treated with Abeta (25-35) in the presence of blocking antibody against NGF, only a partial TrkA activation (2-fold) was observed. These results have been confirmed by using pathophysiological Abeta (1-42) oligomers. Our data provide the evidence that Abeta induces the TrkA pathway activation directly by itself and indirectly promoting NGF secretion.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspases/metabolismo , Células Cultivadas , Ativação Enzimática , Hipocampo/citologia , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor trkA/genética , Transdução de Sinais/fisiologia
14.
J Neurosci Res ; 85(10): 2253-61, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17510978

RESUMO

We investigated the effect of beta-amyloid (Abeta) (25-35), a cytotoxic fragment of Abeta peptide, on lipid metabolism and protein ubiquitination in cultured rat hippocampal neurons. After treatment with Abeta under conditions leading to apoptotis, as assessed by caspase activity assay, the total cell mass of lipids changed following a biphasic behavior, with an increase that reached a maximum after 16 hr of treatment, followed by a decrease. The increase at 16 hr was 15.3% in the case of phospholipids and 103.0% in the case of gangliosides and was due to enhanced biosynthesis as confirmed by increase of radioactivity incorporation (phospholipids +52.0%, gangliosides +193.1%) in cells fed with tritiated palmitic acid. No change with respect to cholesterol was observed. Strikingly, under these conditions, the ubiquitination state of cell proteins strongly increased. These effects were not observed with the (35-25) reverse sequence peptide. Similarly to Abeta, lactacystin treatment increased lipid synthesis and protein ubiquitination; only lactacystin, and not Abeta, induced a strong decrease of proteasome chimotrypsin activity. These results suggest that Abeta enhances protein ubiquitination, without inhibiting proteasomal activity, and lipid synthesis. These results may shed new light on the mechanisms of Abeta toxicity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Ubiquitina/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Caspases/metabolismo , Células Cultivadas , Quimotripsina/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Hipocampo/citologia , Microscopia Eletrônica , Neurônios/ultraestrutura , Ácido Palmítico/metabolismo , Ratos , Trítio
15.
J Pathol ; 198(3): 378-87, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12375271

RESUMO

Multiple symmetric lipomatosis (MSL) is an inherited disorder in which enlarging and unencapsulated lipomas symmetrically develop in the subcutaneous tissue of the neck, shoulders, mammary, and truncal regions. In some cases, it is associated with mitochondrial DNA abnormalities. The pathogenesis of MSL is completely unknown, although the fat deposits may be due to a neoplastic-like proliferation of functionally defective brown adipocytes. It has recently been demonstrated that the beta(3)-adrenergic receptor is the functionally relevant adrenergic receptor subtype in brown adipocytes and that its stimulation by noradrenaline (NA) modulates the expression of genes, such as uncoupling protein (UCP)-1 and inducible nitric oxide synthase (iNOS), involved in fat cell proliferation and differentiation. Furthermore, Trp64Arg mutation of the beta(3)-adrenoceptor has been implicated in lower NA activity in adipose tissues. The aim of this study was to investigate the molecular and functional characteristics of MSL adipocytes and to analyse the effects of nitric oxide (NO) on the proliferation/differentiation of MSL adipocytes in culture, and the relevance of putative noradrenergic deficit in the development of lipomas in MSL patients. Cultured MSL adipocytes were able to synthesize UCP-1 (the selective marker of brown adipocytes), but unlike that of normally functioning brown fat cells, the expression of the UCP-1 gene was not significantly induced by NA. NA is also defective in inducing iNOS gene expression, thus leading to reduced NO production and a consequent reduction in the anti-proliferative, adipogenic (mitochondrial biogenesis) effects of NA on MSL cells. Furthermore, the transcriptional peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1), which plays a key role in the sympathetic-stimulated mitochondrial biogenesis of brown adipocytes, is expressed but not induced by NA in MSL cells, as it is in brown adipocytes. The study did not find any association between beta(3)-adrenoceptor gene polymorphism and noradrenergic signalling defects in MSL subjects with or without mitochondrial DNA mutations.


Assuntos
Adipócitos/patologia , Tecido Adiposo Marrom/patologia , Lipomatose Simétrica Múltipla/patologia , Norepinefrina/fisiologia , Adipócitos/efeitos dos fármacos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canais Iônicos , Lipomatose Simétrica Múltipla/genética , Lipomatose Simétrica Múltipla/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Norepinefrina/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteína Desacopladora 1
16.
J Cell Sci ; 115(Pt 8): 1689-702, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11950887

RESUMO

Tail-anchored (TA) proteins, which are defined by an N-terminal cytosolic region and a C-terminal transmembrane domain (TMD), provide useful models for studying the role of the TMD in sorting within the exo-endocytic system. Previous work has shown that a short TMD is required to keep ER-resident TA proteins from escaping to downstream compartments of the secretory pathway. To investigate the role of the TMD in TA protein sorting, we used model constructs, which consisted of GFP linked at its C-terminus to the tail region of cytochrome b(5) with TMDs of differing length or hydrophobicity. Expression of these constructs in CV-1 cells demonstrated that the feature determining exit from the ER is hydrophobicity and that if exit occurs, at least a part of the protein reaches the cell surface. To investigate which pathway to the surface is followed by plasma-membrane-directed TA constructs, we expressed the TA constructs in polarised Madin Darby Canine Kidney (MDCK) cells. The constructs with 22 and 25 residue TMDs were localised basolaterally, but addition at the C-terminus of a 20-residue peptide containing an N-glycosylation site resulted in glycosylation-dependent relocation of approximately 50% of the protein to the apical surface. This result suggests that TA proteins may reach the basolateral surface without a signal or that our constructs contain a weak basolateral determinant that is recessive to the apical information carried by the glycan. To assess the effect of the TMDs of endogenous TA proteins, GFP was linked to the tails of syntaxin 3 and 4, which localise to the apical and basolateral surface, respectively, of MDCK cells. The two GFP fusion proteins showed a different surface distribution, which is consistent with a role for the two syntaxin TMDs in polarised sorting.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Linhagem Celular , Citocromos b5/química , Citocromos b5/metabolismo , Detergentes/química , Detergentes/metabolismo , Células Epiteliais/citologia , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Qa-SNARE , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA