Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Med Genet A ; 188(8): 2325-2330, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678493

RESUMO

Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is associated with various specific cytogenetic and molecular markers that have significant influence on treatment and prognosis. A subset of children has a much higher risk of developing B-ALL due to constitutional genetic alterations such as trisomy 21 (Down's syndrome). In these patients, B-ALL is often associated with specific genomic profiles leading to leukemic transformation. In rare cases, constitutional structural chromosomal abnormalities involving chromosome 21, such as the der(15;21) Robertsonian translocation and a ring 21 chromosome, have been associated with intrachromosomal amplification of chromosome 21 (iAMP21) B-ALL. Here, we report the development of B-ALL in a child with Down's syndrome who carries a constitutional isodicentric chromosome 21 [idic(21)], described previously by Putra et al., 2017. This idic(21) appeared to be unstable during mitosis, leading to somatic rearrangements consistent with iAMP21 amplification, resulting in the development of leukemia. In this case, a single constitutional structural chromosome 21 rearrangement resulted in a B-ALL with Down syndrome-associated genomic lesions as well as genomic lesions not common to the Down syndrome subtype of B-ALL. Our findings highlight the need for counseling of individuals with constitutional structural chromosome 21 rearrangements regarding their risks of developing a B-ALL.


Assuntos
Linfoma de Burkitt , Síndrome de Down , Leucemia-Linfoma Linfoblástico de Células Precursoras , Cromossomos em Anel , Linfoma de Burkitt/complicações , Criança , Aberrações Cromossômicas , Cromossomos Humanos Par 21/genética , Síndrome de Down/complicações , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocação Genética
2.
Cell Mol Immunol ; 18(2): 374-384, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420357

RESUMO

Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH. Moreover, we found elevated levels of IL-6 in the blood and lungs of patients and mice with PH. We observed that transgenic mice overexpressing Il-6 in the lungs displayed elevated neutrophil egress from the bone marrow and exaggerated neutrophil recruitment to the lungs, resulting in exacerbated pulmonary vascular remodeling, and dysfunctional hemodynamics. Mechanistically, we found that IL-6-induced neutrophil egress from the bone marrow was dependent on interferon regulatory factor 4 (IRF-4)-mediated CX3CR1 expression in neutrophils. Consequently, Cx3cr1 genetic deficiency in hematopoietic cells in Il-6-transgenic mice significantly reduced neutrophil egress from bone marrow and decreased neutrophil counts in the lungs, thus ameliorating pulmonary remodeling and hemodynamics. In summary, these findings define a novel mechanism of IL-6-induced neutrophil egress from the bone marrow and reveal a new therapeutic target to curtail neutrophil-mediated inflammation in pulmonary vascular disease.


Assuntos
Células da Medula Óssea/patologia , Hipertensão Pulmonar/patologia , Inflamação/complicações , Interleucina-6/metabolismo , Pulmão/patologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Feminino , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/genética , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
3.
Sci Transl Med ; 12(553)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32718989

RESUMO

Patients with insulin resistance have high risk of cardiovascular disease such as myocardial infarction (MI). However, it is not known whether MI can initiate or aggravate insulin resistance. We observed that patients with ST-elevation MI and mice with MI had de novo hyperglycemia and features of insulin resistance, respectively. In mouse models of both myocardial and skeletal muscle injury, we observed that the number of visceral adipose tissue (VAT)-resident macrophages decreased because of apoptosis after these distant organ injuries. Patients displayed a similar decrease in VAT-resident macrophage numbers and developed systemic insulin resistance after ST-elevation MI. Loss of VAT-resident macrophages after MI injury led to systemic insulin resistance in non-diabetic mice. Danger signaling-associated protein high mobility group box 1 was released by the dead myocardium after MI in rodents and triggered macrophage apoptosis via Toll-like receptor 4. The VAT-resident macrophage population in the steady state in mice was transcriptomically distinct from macrophages in the brain, skin, kidney, bone marrow, lungs, and liver and was derived from hematopoietic progenitor cells just after birth. Mechanistically, VAT-resident macrophage apoptosis and de novo insulin resistance in mouse models of MI were linked to diminished concentrations of macrophage colony-stimulating factor and adiponectin. Collectively, these findings demonstrate a previously unappreciated role of adipose tissue-resident macrophages in sensing remote organ injury and promoting MI pathogenesis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Resistência à Insulina , Infarto do Miocárdio , Tecido Adiposo , Animais , Apoptose , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
4.
Exp Hematol ; 84: 19-28.e4, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151553

RESUMO

Erythropoiesis in the bone marrow and spleen depends on intricate interactions between the resident macrophages and erythroblasts. Our study focuses on identifying the role of nuclear factor erythroid 2-related factor 2 (Nrf2) during recovery from stress erythropoiesis. To that end, we induced stress erythropoiesis in Nrf2+/+ and Nrf2-null mice and evaluated macrophage subsets known to support erythropoiesis and erythroid cell populations. Our results confirm macrophage and erythroid hypercellularity after acute blood loss. Importantly, Nrf2 depletion results in a marked numerical reduction of F4/80+/CD169+/CD11b+ macrophages, which is more prominent under the induction of stress erythropoiesis. The observed macrophage deficiency is concomitant to a significantly impaired erythroid response to acute stress erythropoiesis in both murine bone marrow and murine spleen. Additionally, peripheral blood reticulocyte count as a response to acute blood loss is delayed in Nrf2-deficient mice compared with age-matched controls (11.0 ± 0.6% vs. 14.8 ± 0.6%, p ≤ 0.001). Interestingly, we observe macrophage hypercellularity in conjunction with erythroid hyperplasia in the bone marrow during stress erythropoiesis in Nrf2+/+ controls, with both impaired in Nrf2-/- mice. We further confirm the finding of macrophage hypercellularity in another model of erythroid hyperplasia, the transgenic sickle cell mouse, characterized by hemolytic anemia and chronic stress erythropoiesis. Our results revealed the role of Nrf2 in stress erythropoiesis in the bone marrow and that macrophage hypercellularity occurs concurrently with erythroid expansion during stress erythropoiesis. Macrophage hypercellularity is a previously underappreciated feature of stress erythropoiesis in sickle cell disease and recovery from blood loss.


Assuntos
Células da Medula Óssea/metabolismo , Eritropoese , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Baço/metabolismo , Estresse Fisiológico , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/patologia , Feminino , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Baço/patologia
5.
Am J Clin Pathol ; 151(4): 386-394, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534953

RESUMO

OBJECTIVES: T-cell receptor (TCR) gene rearrangement studies are widely used for assessing T-cell clonality. The frequency and significance of clonal peaks restricted to TCR ß (TCRB) tube C are uncertain. We retrospectively reviewed 80 TCR studies performed on bone marrow/peripheral blood. METHODS: TCRB and TCR γ (TCRG) analyses were performed using BIOMED-2 primers. A peak was considered clonal or atypical if it was reproducible and 5× or more or 3× to 5× polyclonal background, respectively. RESULTS: TCRB analysis demonstrated 12 (15%) of 80 cases with one to four isolated peaks in tube C (>3×) with polyclonal pattern in tubes A and B. TCRG analysis was monoclonal in two cases (both definite T-cell neoplasms), polyclonal in four, and oligoclonal in six. Of the 10 cases without clone in TCRG, six had autoimmune disorder and none had T-cell neoplasm. CONCLUSIONS: Peaks restricted to TCRB tube C in the TCR analysis may be misleading, as it is often not indicative of an overt T-cell neoplasm.


Assuntos
Rearranjo Gênico do Linfócito T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T/genética , Linfoma de Células T/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Clonais , Estudos de Coortes , Primers do DNA/genética , Feminino , Humanos , Linfoma de Células T/genética , Linfoma de Células T/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Linfócitos T/patologia , Adulto Jovem
6.
J Investig Med ; 66(1): 1-6, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101126

RESUMO

Anemia is a very common blood disorder that affects the lives of billions of people worldwide. Anemia is caused by the loss of blood, increased destruction of red blood cells (RBCs), or reduced production of RBCs. Erythropoiesis is the complex process of RBC differentiation and maturation, in which protein degradation plays a crucial role. Protein ubiquitination regulates programmed protein degradation, which can be reversed by deubiquitinating enzymes (DUBs); however, the role of DUBs in erythropoiesis has not been well studied. We examined the expression of DUBs during erythropoiesis using an ex vivo human CD34+ hematopoietic progenitor cell culture system. Here we show that ubiquitin-specific protease 50 (USP50) levels are increased during erythropoiesis. USP50 mRNA levels are significantly increased on day 3 and protein levels are elevated on day 9 of erythroid differentiation. Coimmunoprecipitation and proteomics analyses reveal that Ku70, a DNA-binding protein, is associated with USP50. Overexpression of USP50 has no effect on Ku70 mRNA levels, while it reduces Ku70 protein levels by promoting Ku70 degradation, suggesting that USP50 may indirectly regulate Ku70 protein stability. USP50 protein is also not stable. USP50 protein degradation is independent of the proteasomal and the lysosomal degradation systems. This study suggests that DUBs like USP50 may regulate protein stability during erythropoiesis; however, more investigation is warranted.


Assuntos
Eritropoese , Autoantígeno Ku/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Antígenos CD34/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Indução Enzimática , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Exp Med ; 215(2): 661-679, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282252

RESUMO

Iron-restricted human anemias are associated with the acquisition of marrow resistance to the hematopoietic cytokine erythropoietin (Epo). Regulation of Epo responsiveness by iron availability serves as the basis for intravenous iron therapy in anemias of chronic disease. Epo engagement of its receptor normally promotes survival, proliferation, and differentiation of erythroid progenitors. However, Epo resistance caused by iron restriction selectively impairs proliferation and differentiation while preserving viability. Our results reveal that iron restriction limits surface display of Epo receptor in primary progenitors and that mice with enforced surface retention of the receptor fail to develop anemia with iron deprivation. A mechanistic pathway is identified in which erythroid iron restriction down-regulates a receptor control element, Scribble, through the mediation of the iron-sensing transferrin receptor 2. Scribble deficiency reduces surface expression of Epo receptor but selectively retains survival signaling via Akt. This mechanism integrates nutrient sensing with receptor function to permit modulation of progenitor expansion without compromising survival.


Assuntos
Eritropoese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/farmacologia , Proteínas de Membrana/metabolismo , Receptores da Eritropoetina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Catepsinas/metabolismo , Linhagem Celular , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/ultraestrutura , Humanos , Isocitratos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Estabilidade Proteica/efeitos dos fármacos , Receptores da Transferrina/metabolismo
8.
Int J Dermatol ; 55(2): e62-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26266670

RESUMO

BACKGROUND: Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma (CTCL), followed by CD30+ lymphoproliferative disorders, including lymphomatoid papulosis (LyP) and primary cutaneous anaplastic large cell lymphoma (pcALCL). The objective was to report on a series of patients with different types of CTCL at different times in their clinical course, with a focus on clonality studies. METHODS: Four patients with multiple diagnoses of CTCLs were identified. The clinical information, treatment interventions, and histopathology were reviewed. T-cell receptor (TCR) gene rearrangement studies were performed on all available specimens. RESULTS: The four patients carried diagnoses of: (1) pcALCL and MF; (2) pcALCL, LyP, and pcALCL; (3) LyP, MF, and pcALCL; (4) LyP, pcALCL, and MF; each with characteristic presentation and histopathologic findings. The results of the TCR polymerase chain reaction showed that all tumors expressed and retained a TCR clone(s) as follows: (1) biallelic clone; (2) single clone; (3) biallelic clone with additional clone; and (4) single clone, respectively. CONCLUSION: We report a series of four cases of individual patients with coexisting diagnoses of some combination of MF, LyP, and pcALCL, whose lesions presented in nontraditional sequence and demonstrated a retained clone by gene rearrangement analysis.


Assuntos
Genes Codificadores dos Receptores de Linfócitos T , Linfoma Anaplásico Cutâneo Primário de Células Grandes/genética , Papulose Linfomatoide/genética , Micose Fungoide/genética , Segunda Neoplasia Primária/genética , Neoplasias Cutâneas/genética , Idoso de 80 Anos ou mais , Alelos , Feminino , Rearranjo Gênico , Humanos , Antígeno Ki-1/análise , Linfoma Anaplásico Cutâneo Primário de Células Grandes/química , Linfoma Anaplásico Cutâneo Primário de Células Grandes/patologia , Papulose Linfomatoide/metabolismo , Papulose Linfomatoide/patologia , Masculino , Pessoa de Meia-Idade , Micose Fungoide/química , Micose Fungoide/patologia , Segunda Neoplasia Primária/química , Segunda Neoplasia Primária/patologia , Neoplasias Cutâneas/química , Neoplasias Cutâneas/patologia , Adulto Jovem
9.
J Investig Med ; 63(6): 806-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107423

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 cytokine superfamily that potently drives production of a variety of cytokines and contributes to the pathogenesis of inflammatory diseases. The IL-33 is a nuclear protein and is released from apoptotic or necrotic cells. Serum IL-33 levels are increased in various diseases, such as atopic dermatitis, chronic hepatitis C infection, and asthma. Here, we show that red blood cells (RBCs) are one of the major sources of plasma IL-33. The IL-33 levels are significantly increased in supernatants from lysed RBCs. Plasma IL-33 levels are increased in patients during hemolysis, and plasma IL-33 levels show a positive correlation with degree of hemolysis. The IL-33 protein and messenger RNA levels were detected in the late stages of differentiation in ex vivo primary human erythroid progenitor cell cultures, suggesting that IL-33 is expressed during maturation of RBCs. Furthermore, hemoglobin depleted red cell lysates induced IL-8 expression in human epithelial cells. This effect was attenuated in IL-33 decoy receptor expressing cells and was enhanced in IL-33 receptor expressing cells. These results suggest that erythroid progenitor cells produce IL-33 and circulating RBCs represent a major source of IL-33 that is released upon hemolysis.


Assuntos
Eritrócitos/metabolismo , Interleucina-33/metabolismo , Anemia Falciforme/sangue , Extratos Celulares , Células Epiteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interleucina-33/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Pulmão/patologia , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Clin Invest ; 123(8): 3614-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863711

RESUMO

The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.


Assuntos
Anemia/tratamento farmacológico , Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Deficiências de Ferro , Isocitratos/farmacologia , Aconitato Hidratase/metabolismo , Anemia/metabolismo , Anemia/patologia , Animais , Células Cultivadas , Células Eritroides/enzimologia , Feminino , Humanos , Interferon gama/fisiologia , Isocitratos/uso terapêutico , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional
11.
Blood ; 120(20): 4219-28, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22983445

RESUMO

In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.


Assuntos
Eritropoese/fisiologia , Fator de Transcrição GATA1/fisiologia , Histona Desacetilases/fisiologia , Proteína Quinase C/fisiologia , Acetilação , Anemia/enzimologia , Anemia/genética , Anemia/patologia , Animais , Carbazóis/farmacologia , Linhagem da Célula , Citocinas/fisiologia , Ativação Enzimática , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/enzimologia , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
12.
PLoS One ; 6(8): e23850, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887333

RESUMO

BACKGROUND: Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy. METHODOLOGY/PRINCIPAL FINDINGS: In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition. CONCLUSIONS/SIGNIFICANCE: Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.


Assuntos
Aconitato Hidratase/fisiologia , Eritropoese , Sistema de Sinalização das MAP Quinases , Aconitato Hidratase/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Policitemia Vera
13.
Hum Pathol ; 41(11): 1641-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20656316

RESUMO

Posttransplantation lymphoproliferative disorders (PTLD) are heterogeneous lesions with variable morphology, immunophenotype, and molecular characteristics. Multiple distinct primary lesions can occur in PTLD, rarely with both B-cell and T-cell characteristics. Lesions can involve both grafted organs and other sites; however, PTLD involving the pituitary gland has not been previously reported. We describe a patient who developed Epstein-Barr virus-negative PTLD 13 years posttransplantation involving the terminal ileum and pituitary, which was simultaneously involved by a pituitary adenoma. Immunohistochemistry of the pituitary lesion showed expression of CD79a, CD3, and CD7 with clonal rearrangements of both T-cell receptor gamma chain (TRG@) and immunoglobulin heavy chain (IGH@) genes. The terminal ileal lesion was immunophenotypically and molecularly distinct. This is the first report of pituitary PTLD and illustrates the potentially complex nature of PTLD.


Assuntos
Transplante de Pulmão , Transtornos Linfoproliferativos/etiologia , Doenças da Hipófise/etiologia , Hipófise/patologia , Complicações Pós-Operatórias , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Adulto , Antígenos CD/metabolismo , Células Clonais , Evolução Fatal , Feminino , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Rearranjo Gênico da Cadeia gama dos Receptores de Antígenos dos Linfócitos T , Humanos , Íleo/patologia , Cadeias Pesadas de Imunoglobulinas/genética , Imuno-Histoquímica , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Doenças da Hipófise/genética , Doenças da Hipófise/patologia , Hipófise/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia
14.
Blood ; 116(1): 97-108, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20407036

RESUMO

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.


Assuntos
Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/metabolismo , Ferro/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Anemia Ferropriva/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Deficiências de Ferro , Proteína 1 Reguladora do Ferro/genética , Isocitratos/administração & dosagem , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
15.
Blood ; 112(13): 4884-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18780834

RESUMO

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood. In this study, we identified functional and physical interaction of GATA-1 with components of the positive transcriptional elongation factor P-TEFb, a complex containing cyclin T1 and the cyclin-dependent kinase 9 (Cdk9). Megakaryocytic induction was associated with dynamic changes in endogenous P-TEFb composition, including recruitment of GATA-1 and dissociation of HEXIM1, a Cdk9 inhibitor. shRNA knockdowns and pharmacologic inhibition both confirmed contribution of Cdk9 activity to megakaryocytic differentiation. In mice with megakaryocytic GATA-1 deficiency, Cdk9 inhibition produced a fulminant but reversible megakaryoblastic disorder reminiscent of the transient myeloproliferative disorder of Down syndrome. P-TEFb has previously been implicated in promoting elongation of paused RNA polymerase II and in programming hypertrophic differentiation of cardiomyocytes. Our results offer evidence for P-TEFb cross-talk with GATA-1 in megakaryocytic differentiation, a program with parallels to cardiomyocyte hypertrophy.


Assuntos
Diferenciação Celular , Quinase 9 Dependente de Ciclina/fisiologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Fator B de Elongação Transcricional Positiva/metabolismo , Receptor Cross-Talk , Animais , Células Cultivadas , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Síndrome de Down , Fator de Transcrição GATA1/genética , Humanos , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA