Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 165(7): 1592-1604, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38293826

RESUMO

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.


Assuntos
Angiotensina II , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais , Humanos , Animais , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Camundongos , Masculino , Feminino , Colo/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Transcriptoma
2.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667839

RESUMO

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Assuntos
Bradicinina , Carbamatos , Fenilenodiaminas , Humanos , Bradicinina/farmacologia , Dor Abdominal , Trifosfato de Adenosina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa
3.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775903

RESUMO

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Assuntos
Nociceptores , Dor Visceral , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Nociceptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dor Visceral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Clin Transl Gastroenterol ; 12(2): e00313, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617189

RESUMO

INTRODUCTION: Despite heterogeneity, an increased prevalence of psychological comorbidity and an altered pronociceptive gut microenvironment have repeatedly emerged as causative pathophysiology in patients with irritable bowel syndrome (IBS). Our aim was to study these phenomena by comparing gut-related symptoms, psychological scores, and biopsy samples generated from a detailed diarrhea-predominant IBS patient (IBS-D) cohort before their entry into a previously reported clinical trial. METHODS: Data were generated from 42 patients with IBS-D who completed a daily 2-week bowel symptom diary, the Hospital Anxiety and Depression score, and the Patient Health Questionnaire-12 Somatic Symptom score and underwent unprepared flexible sigmoidoscopy. Sigmoid mucosal biopsies were separately evaluated using immunohistochemistry and culture supernatants to determine cellularity, mediator levels, and ability to stimulate colonic afferent activity. RESULTS: Pain severity scores significantly correlated with the daily duration of pain (r = 0.67, P < 0.00001), urgency (r = 0.57, P < 0.0005), and bloating (r = 0.39, P < 0.05), but not with psychological symptom scores for anxiety, depression, or somatization. Furthermore, pain severity scores from individual patients with IBS-D were significantly correlated (r = 0.40, P < 0.008) with stimulation of colonic afferent activation mediated by their biopsy supernatant, but not with biopsy cell counts nor measured mediator levels. DISCUSSION: Peripheral pronociceptive changes in the bowel seem more important than psychological factors in determining pain severity within a tightly phenotyped cohort of patients with IBS-D. No individual mediator was identified as the cause of this pronociceptive change, suggesting that nerve targeting therapeutic approaches may be more successful than mediator-driven approaches for the treatment of pain in IBS-D.


Assuntos
Dor Abdominal/etiologia , Vias Aferentes/fisiopatologia , Colo Sigmoide/inervação , Síndrome do Intestino Irritável/fisiopatologia , Adulto , Animais , Ansiedade , Biópsia , Depressão , Diarreia/etiologia , Feminino , Mutação com Ganho de Função , Humanos , Imuno-Histoquímica , Mucosa Intestinal/inervação , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/psicologia , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Índice de Gravidade de Doença , Sigmoidoscopia
5.
Pain ; 161(9): 2129-2141, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32332252

RESUMO

ABSTRACT: Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients. This study confirms that stimulation with tumor necrosis factor (TNF-α) results in expression of proinflammatory genes in mouse and human FLS (derived from osteoarthritis and rheumatoid arthritis patients), as well as increased secretion of cytokines from mouse TNF-α-stimulated FLS (TNF-FLS). Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.


Assuntos
Sinoviócitos , Animais , Células Cultivadas , Técnicas de Cocultura , Fibroblastos , Humanos , Articulação do Joelho , Camundongos , Dor , Células Receptoras Sensoriais , Membrana Sinovial , Fator de Necrose Tumoral alfa
6.
Pain ; 161(4): 773-786, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31790010

RESUMO

The ability to sense visceral pain during appendicitis is diminished with age leading to delay in seeking health care and poorer clinical outcomes. To understand the mechanistic basis of this phenomenon, we examined visceral nociception in aged mouse and human tissue. Inflamed and noninflamed appendixes were collected from consenting patients undergoing surgery for the treatment of appendicitis or bowel cancer. Supernatants were generated by incubating samples in buffer and used to stimulate multiunit activity in intestinal preparations, or single-unit activity from teased fibres in colonic preparations, of young and old mice. Changes in afferent innervation with age were determined by measuring the density of calcitonin gene-related peptide-positive afferent fibres and by counting dorsal root ganglia back-labelled by injection of tracer dye into the wall of the colon. Finally, the effect of age on nociceptor function was studied in mouse and human colon. Afferent responses to appendicitis supernatants were greatly impaired in old mice. Further investigation revealed this was due to a marked reduction in the afferent innervation of the bowel and a substantial impairment in the ability of the remaining afferent fibres to transduce noxious stimuli. Translational studies in human tissue demonstrated a significant reduction in the multiunit but not the single-unit colonic mesenteric nerve response to capsaicin with age, indicative of a loss of nociceptor innervation. Our data demonstrate that anatomical and functional deficits in nociception occur with age, underpinning the atypical or silent presentation of appendicitis in the elderly.


Assuntos
Apendicite , Idoso , Animais , Apendicite/complicações , Colo , Gânglios Espinais , Humanos , Camundongos , Neurônios Aferentes , Nociceptividade , Nociceptores , Dor Visceral
7.
Nat Commun ; 10(1): 1029, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833673

RESUMO

Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.


Assuntos
Trifosfato de Adenosina/metabolismo , Enterócitos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestinos , Neurônios Aferentes/metabolismo , Vias Aferentes , Animais , Linhagem Celular , Ingestão de Alimentos , Células Enteroendócrinas/metabolismo , Feminino , Cistos Glanglionares/metabolismo , Cistos Glanglionares/patologia , Incretinas/metabolismo , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/patologia , Peptídeo YY/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Nervo Vago/metabolismo
8.
Gut ; 67(1): 86-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654583

RESUMO

OBJECTIVE: The development of effective visceral analgesics free of deleterious gut-specific side effects is a priority. We aimed to develop a reproducible methodology to study visceral nociception in human tissue that could aid future target identification and drug evaluation. DESIGN: Electrophysiological (single unit) responses of visceral afferents to mechanical (von Frey hair (VFH) and stretch) and chemical (bradykinin and ATP) stimuli were examined. Thus, serosal afferents (putative nociceptors) were used to investigate the effect of tegaserod, and transient receptor potential channel, vanilloid 4 (TRPV4) modulation on mechanical responses. RESULTS: Two distinct afferent fibre populations, serosal (n=23) and muscular (n=21), were distinguished based on their differences in sensitivity to VFH probing and tissue stretch. Serosal units displayed sensitivity to key algesic mediators, bradykinin (6/14 units tested) and ATP (4/10), consistent with a role as polymodal nociceptors, while muscular afferents are largely insensitive to bradykinin (0/11) and ATP (1/10). Serosal nociceptor mechanosensitivity was attenuated by tegaserod (-20.8±6.9%, n=6, p<0.05), a treatment for IBS, or application of HC067047 (-34.9±10.0%, n=7, p<0.05), a TRPV4 antagonist, highlighting the utility of the preparation to examine the mechanistic action of existing drugs or novel analgesics. Repeated application of bradykinin or ATP produced consistent afferent responses following desensitisation to the first application, demonstrating their utility as test stimuli to evaluate analgesic activity. CONCLUSIONS: Functionally distinct subpopulations of human visceral afferents can be demonstrated and could provide a platform technology to further study nociception in human tissue.


Assuntos
Fármacos Gastrointestinais/farmacologia , Intestinos/inervação , Nociceptores/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas dos Receptores da Bradicinina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Indóis/farmacologia , Intestinos/efeitos dos fármacos , Morfolinas/farmacologia , Nociceptores/fisiologia , Estimulação Física/métodos , Pirróis/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Técnicas de Cultura de Tecidos
9.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105664

RESUMO

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Nociceptores/metabolismo , Dor Visceral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Capsaicina/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Nociceptores/efeitos dos fármacos , Óleos de Plantas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/genética
10.
Gastroenterology ; 150(4): 875-87.e9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26752109

RESUMO

BACKGROUND & AIMS: Histamine sensitizes the nociceptor transient reporter potential channel V1 (TRPV1) and has been shown to contribute to visceral hypersensitivity in animals. We investigated the role of TRPV1 in irritable bowel syndrome (IBS) and evaluated if an antagonist of histamine receptor H1 (HRH1) could reduce symptoms of patients in a randomized placebo-controlled trial. METHODS: By using live calcium imaging, we compared activation of submucosal neurons by the TRPV1 agonist capsaicin in rectal biopsy specimens collected from 9 patients with IBS (ROME 3 criteria) and 15 healthy subjects. The sensitization of TRPV1 by histamine, its metabolite imidazole acetaldehyde, and supernatants from biopsy specimens was assessed by calcium imaging of mouse dorsal root ganglion neurons. We then performed a double-blind trial of patients with IBS (mean age, 31 y; range, 18-65 y; 34 female). After a 2-week run-in period, subjects were assigned randomly to groups given either the HRH1 antagonist ebastine (20 mg/day; n = 28) or placebo (n = 27) for 12 weeks. Rectal biopsy specimens were collected, barostat studies were performed, and symptoms were assessed (using the validated gastrointestinal symptom rating scale) before and after the 12-week period. Patients were followed up for an additional 2 weeks. Abdominal pain, symptom relief, and health-related quality of life were assessed on a weekly basis. The primary end point of the study was the effect of ebastine on the symptom score evoked by rectal distension. RESULTS: TRPV1 responses of submucosal neurons from patients with IBS were potentiated compared with those of healthy volunteers. Moreover, TRPV1 responses of submucosal neurons from healthy volunteers could be potentiated by their pre-incubation with histamine; this effect was blocked by the HRH1 antagonist pyrilamine. Supernatants from rectal biopsy specimens from patients with IBS, but not from the healthy volunteers, sensitized TRPV1 in mouse nociceptive dorsal root ganglion neurons via HRH1; this effect could be reproduced by histamine and imidazole acetaldehyde. Compared with subjects given placebo, those given ebastine had reduced visceral hypersensitivity, increased symptom relief (ebastine 46% vs placebo 13%; P = .024), and reduced abdominal pain scores (ebastine 39 ± 23 vs placebo 62 ± 22; P = .0004). CONCLUSIONS: In studies of rectal biopsy specimens from patients, we found that HRH1-mediated sensitization of TRPV1 is involved in IBS. Ebastine, an antagonist of HRH1, reduced visceral hypersensitivity, symptoms, and abdominal pain in patients with IBS. Inhibitors of this pathway might be developed as a new treatment approach for IBS. ClinicalTrials.gov no: NCT01144832.


Assuntos
Analgésicos/uso terapêutico , Butirofenonas/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Síndrome do Intestino Irritável/tratamento farmacológico , Neurônios/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Piperidinas/uso terapêutico , Receptores Histamínicos H1/efeitos dos fármacos , Reto/inervação , Canais de Cátion TRPV/metabolismo , Dor Abdominal/metabolismo , Dor Abdominal/fisiopatologia , Dor Abdominal/prevenção & controle , Adolescente , Adulto , Idoso , Analgésicos/efeitos adversos , Bélgica , Biópsia , Butirofenonas/efeitos adversos , Sinalização do Cálcio/efeitos dos fármacos , Método Duplo-Cego , Feminino , Fármacos Gastrointestinais/efeitos adversos , Antagonistas dos Receptores Histamínicos H1/efeitos adversos , Humanos , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Medição da Dor , Piperidinas/efeitos adversos , Qualidade de Vida , Receptor Cross-Talk/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Indução de Remissão , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
11.
Pain ; 155(10): 1962-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972070

RESUMO

Chronic visceral pain affects millions of individuals worldwide and remains poorly understood, with current therapeutic options constrained by gastrointestinal adverse effects. Visceral pain is strongly associated with inflammation and distension of the gut. Here we report that the voltage-gated sodium channel subtype NaV1.9 is expressed in half of gut-projecting rodent dorsal root ganglia sensory neurons. We show that NaV1.9 is required for normal mechanosensation, for direct excitation and for sensitization of mouse colonic afferents by mediators from inflammatory bowel disease tissues, and by noxious inflammatory mediators individually. Excitatory responses to ATP or PGE2 were substantially reduced in NaV1.9(-/-) mice. Deletion of NaV1.9 substantially attenuates excitation and subsequent mechanical hypersensitivity after application of inflammatory soup (IS) (bradykinin, ATP, histamine, PGE2, and 5HT) to visceral nociceptors located in the serosa and mesentery. Responses to mechanical stimulation of mesenteric afferents were also reduced by loss of NaV1.9, and there was a rightward shift in stimulus-response function to ramp colonic distension. By contrast, responses to rapid, high-intensity phasic distension of the colon are initially unaffected; however, run-down of responses to repeat phasic distension were exacerbated in NaV1.9(-/-) afferents. Finally colonic afferent activation by supernatants derived from inflamed human tissue was greatly reduced in NaV1.9(-/-) mice. These results demonstrate that NaV1.9 is required for persistence of responses to intense mechanical stimulation, contributes to inflammatory mechanical hypersensitivity, and is essential for activation by noxious inflammatory mediators, including those from diseased human bowel. These observations indicate that NaV1.9 represents a high-value target for development of visceral analgesics.


Assuntos
Colo/inervação , Hiperalgesia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Fibras Aferentes Viscerais/metabolismo , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Adolescente , Adulto , Idoso , Animais , Colo/metabolismo , Colo/fisiopatologia , Dinoprostona/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Humanos , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Estimulação Física , Fibras Aferentes Viscerais/efeitos dos fármacos , Fibras Aferentes Viscerais/fisiopatologia , Adulto Jovem
12.
Eur J Pharmacol ; 699(1-3): 48-54, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23201066

RESUMO

Paradoxically, erythromycin is associated with nausea when used as an antibiotic but at lower doses erythromycin activates motilin receptors and is used to treat delayed gastric emptying and nausea. The aim of this study was to characterise pro- and anti-emetic activity of erythromycin and investigate mechanisms of action. Japanese House musk shrews (Suncus murinus) were used. Erythromycin was administered alone or prior to induction of emesis with abnormal motion or subcutaneous nicotine (10mg/kg). The effects of erythromycin and motilin on vagal nerve activity and on cholinergically mediated contractions of the stomach (evoked by electrical field stimulation) were studied in vitro. The results showed that erythromycin (1 and 5mg/kg) reduced vomiting caused by abnormal motion (e.g., from 10.3 ± 1.8 to 4.0 ± 1.1 emetic episodes at 5mg/kg) or by nicotine (from 9.5 ± 2.0 to 3.1 ± 2.0 at 5mg/kg), increasing latency of onset to emesis; lower or higher doses had no effects. When administered alone, erythromycin 100mg/kg induced vomiting in two of four animals, whereas lower doses did not. In vitro, motilin (1, 100 nM) increased gastric vagal afferent activity without affecting jejunal afferent mesenteric nerve activity. Cholinergically mediated contractions of the stomach (prevented by tetrodotoxin 1 µM or atropine 1 µM, facilitated by l-NAME 300 µM) were facilitated by motilin (1-100 nM) and erythromycin (10-30 µM). In conclusion, low doses of erythromycin have anti-emetic activity. Potential mechanisms of action include increased gastric motility (overcoming gastric stasis) and/ or modulation of vagal nerve pathways involved in emesis, demonstrated by first-time direct recording of vagal activation by motilin.


Assuntos
Antieméticos/farmacologia , Eritromicina/farmacologia , Motilina/farmacologia , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Antieméticos/administração & dosagem , Antieméticos/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Eritromicina/administração & dosagem , Eritromicina/toxicidade , Feminino , Mucosa Gástrica/metabolismo , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/toxicidade , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Motilina/administração & dosagem , Contração Muscular/efeitos dos fármacos , Nicotina/toxicidade , Musaranhos , Estômago/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/etiologia
13.
Br J Pharmacol ; 160(2): 322-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20423343

RESUMO

BACKGROUND AND PURPOSE: In various models vagus nerve activation has been shown to ameliorate intestinal inflammation, via nicotinic acetylcholine receptors (nAChRs) expressed on immune cells. As the alpha7 nAChR has been put forward to mediate this effect, we studied the effect of nicotine and two selective alpha7 nAChR agonists (AR-R17779, (-)-spiro[1-azabicyclo[2.2.2] octane-3,5'-oxazolidin-2'-one and GSK1345038A) on disease severity in two mouse models of experimental colitis. EXPERIMENTAL APPROACH: Colitis was induced by administration of 1.5% dextran sodium sulphate (DSS) in drinking water or 2 mg 2,4,6-trinitrobenzene sulphonic acid (TNBS) intrarectally. Nicotine (0.25 and 2.50 micromol.kg(-1)), AR-R17779 (0.6-30 micromol.kg(-1)) or GSK1345038A (6-120 micromol.kg(-1)) was administered daily by i.p. injection. After 7 (DSS) or 5 (TNBS) days clinical parameters and colonic inflammation were scored. KEY RESULTS: Nicotine and both alpha7 nAChR agonists reduced the activation of NF-kappaB and pro-inflammatory cytokines in whole blood and macrophage cultures. In DSS colitis, nicotine treatment reduced colonic cytokine production, but failed to reduce disease parameters. Reciprocally, treatment with AR-R17779 or GSK1345038A worsened disease and led to increased colonic pro-inflammatory cytokine levels in DSS colitis. The highest doses of GSK1345038A (120 micromol.kg(-1)) and AR-R17779 (30 micromol.kg(-1)) ameliorated clinical parameters, without affecting colonic inflammation. Neither agonist ameliorated TNBS-induced colitis. CONCLUSIONS AND IMPLICATIONS: Although nicotine reduced cytokine responses in vitro, both selective alpha7 nAChR agonists worsened the effects of DSS-induced colitis or were ineffective in those of TNBS-induced colitis. Our data indicate the need for caution in evaluating alpha7 nAChR as a drug target in colitis.


Assuntos
Colite/fisiopatologia , Nicotina/farmacologia , Agonistas Nicotínicos/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Animais , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/toxicidade , Células Cultivadas , Colite/induzido quimicamente , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Injeções Intraperitoneais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Índice de Gravidade de Doença , Compostos de Espiro/administração & dosagem , Compostos de Espiro/farmacologia , Compostos de Espiro/toxicidade , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA