RESUMO
Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).
Assuntos
Aceleradores de Partículas , Radiometria , Radiometria/métodos , FótonsRESUMO
The dosimetry audit services were established in Poland in 1991, since then new audits have been introduced. The recently developed IAEA audit methodology for IMRT H&N treatments was tested nationally. Anthropomorphic SHANE phantom (CIRS) was used to perform measurements in 8 hospitals which voluntarily participated in the study. Each participant had to complete successfully pre-visit activities to take part in an onsite visit. During the visit, auditors together with the local staff, did a CT scan using local protocol, recalculated the plan and verified all the relevant parameters and performed measurements with an ionization chamber and films in SHANE. The adoption of IAEA methodology to the national circumstances was done with no major issues. Participants plans were verified and the results of ionization chamber were all within the 5 % tolerance limit for PTV (max 4,5%) and 7 % for OAR (max 5,3%). Film global gamma results (3 %, 3 mm, 90 % acceptance limit) were within 91,5-99,7% range. The IAEA established acceptance criteria which were achievable for most tests except for CTtoRED conversion curve. The locally performed study allowed establishing new limits. The audit gave interesting results and showed that the procedure is very thorough and capable to identify issues related with suboptimal treatment preparation and delivery. The new limits for CTtoRED conversion curve were adopted for national study. Such an audit gives an opportunity to verify the quality of locally implemented procedures and should be available for Polish hospitals on a daily basis.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Polônia , Radiometria/métodos , Imagens de Fantasmas , Dosagem RadioterapêuticaRESUMO
There are several accepted methods to verify External Beam Radiation Therapy (EBRT) treatment plans, but there is no standard way to check the quality of a brachytherapy treatment plan. PURPOSE: This feasibility study assesses whether the ArcCHECK EBRT radiation detector can also be used to verify Treatment Planning System software quality check procedures for brachytherapy. METHODS AND MATERIALS: ArcCHECK is a three-dimensional matrix of 1386 semiconductor diodes, arranged spirally around an internal cylindrical space that is 32 cm long and 15 cm in diameter. The detector makes it possible to reproduce the distribution of sources in a planned EBRT procedure (energy range 6-22 MeV) using an appropriate phantom. Detector responses are displayed as a two-dimensional dose distribution map on the diode surface. In this pilot brachytherapy study, we determined values that characterized the output of the detectors to a simulated Ir-192 radiation source with an energy range of approximately 9-1378 keV, and compared this to the actual signal recorded by an ArcCHECK detector. Experimental treatment plan measurement was performed using a standard Elekta micro-Selectron-v2 unit equipped with an iridium-192 source. To avoid unit inconsistencies, the signal from each of the diodes and the simulation results were normalized to the maximum value, with similar statistical parameters. RESULTS: The difference between diode indications in the simulation and the actual measurement was analyzed statistically to show the degree of general inconsistency between them. The average difference for diode pairs here is equal 1,07%, with standard deviation 3, 95%. CONCLUSION: The results obtained represent the first quantitative evidence of potential usefulness of the ArcCHECK detector in brachytherapy Treatment Planning System software QC verification.
Assuntos
Braquiterapia , Braquiterapia/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodos , Dosagem RadioterapêuticaRESUMO
Periodic intermediate checks on the equipment used for calibration activity accredited for the conformity with the international norm ISO/IEC 17025 are an essential issue for monitoring the validity of calibration laboratory's results. These checks should be carried out according to a procedure defined by each accredited laboratory. The results of these checks should not exceed the acceptance criteria established in the laboratory and statistical techniques shall be applied to the reviewing of the results. In this work, a simple method of carrying out intermediate checks on working standards used for calibrations of ionizing radiation dosimeters in a 60Co gamma ray beam was presented. Moreover, the statistical analysis of obtained results was presented. This analysis allowed for a reliable inference regarding the operation of the working standards used to calibrate the customer's devices. The presented methods can be used as a guidance in order to conform to the ISO/IEC 17025 requirements for carrying out and reviewing of periodic intermediate checks results in the area of calibrations of ionizing radiation dosimeters for external beam radiotherapy.
Assuntos
Laboratórios , Dosímetros de Radiação , Calibragem , Raios gamaRESUMO
This paper describes the role of the Polish Secondary Standard Dosimetry Laboratory (SSDL) in quality assurance in radiotherapy by means of providing calibration of ionisation chambers, TLD postal dosimetry audits and end-to-end audits for radiation therapy. A historical review of the methods and results are presented. The influence of the SSDL in Warsaw on radiation protection of patients in Poland is discussed. The International Atomic Energy Agency together with World Health Organisation (IAEA/WHO), through its network of SSDLs around the world, propagates newly developed methods for calibration and auditing. Suitable high quality equipment was provided by the IAEA, as well as special materials and technical support to the SSDL in Warsaw. The activity of the SSDL and the services provided for Polish radiotherapy centres have resulted in a reduction of discrepancies between planned doses and doses delivered to patients. The newly tested IAEA methods of end-to-end on-site dosimetry audits allow for monitoring and improving the quality of IMRT in Poland. The traceability of standards used for the calibration of therapy level dosimeters from Polish radiotherapy centres is assured by the IAEA dosimetry laboratory. The consistency of methods performed in the Polish SSDL with the ISO:17025 norm is supervised by the Polish Centre for Accreditation - a member of International Laboratory Accreditation Cooperation (ILAC), for calibration and testing. Due to the rapid technological development of radiotherapy, special attention has to be paid to newly developed methods for dosimetry auditing and institutions which provide services for assuring radiation safety of patients.
RESUMO
Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented.Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations.Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within ±5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria.Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery.
Assuntos
Auditoria Médica/métodos , Órgãos em Risco , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos de Viabilidade , Humanos , Agências Internacionais , Auditoria Médica/normas , Energia Nuclear , Projetos Piloto , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/normas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND AND PURPOSE: An audit methodology for verifying the implementation of output factors (OFs) of small fields in treatment planning systems (TPSs) used in radiotherapy was developed and tested through a multinational research group and performed on a national level in five different countries. MATERIALS AND METHODS: Centres participating in this study were asked to provide OFs calculated by their TPSs for 10â¯×â¯10â¯cm2, 6â¯×â¯6â¯cm2, 4â¯×â¯4â¯cm2, 3â¯×â¯3â¯cm2 and 2â¯×â¯2â¯cm2 field sizes using an SSD of 100â¯cm. The ratio of these calculated OFs to reference OFs was analysed. The action limit was ±3% for the 2â¯×â¯2â¯cm2 field and ±2% for all other fields. RESULTS: OFs for more than 200 different beams were collected in total. On average, the OFs for small fields calculated by TPSs were generally larger than measured reference data. These deviations increased with decreasing field size. On a national level, 30% and 31% of the calculated OFs of the 2â¯×â¯2â¯cm2 field exceeded the action limit of 3% for nominal beam energies of 6â¯MV and for nominal beam energies higher than 6 MV, respectively. CONCLUSION: Modern TPS beam models generally overestimate the OFs for small fields. The verification of calculated small field OFs is a vital step and should be included when commissioning a TPS. The methodology outlined in this study can be used to identify potential discrepancies in clinical beam models.
RESUMO
An audit methodology was developed and applied for output factor (OF) calculations in radiotherapy. The auditees were asked to calculate OFs for field sizes from 10â¯×â¯10â¯cm2 to 2â¯×â¯2â¯cm2. Sixty five beams were audited; missing reference OFs were interpolated. The calculated OFs were in 73% of cases higher than the reference data. The smaller the field size, the higher the overestimations which were observed in the higher fraction of cases. Treatment planning systems generally overestimated OFs for small fields. The reference dataset helped radiotherapy centres to identify discrepancies which were higher than typical.
RESUMO
This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations.
Assuntos
Física Médica/educação , Especialização/estatística & dados numéricos , PolôniaRESUMO
UNLABELLED: The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP 'Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques' was conducted in 2009-2012 as an extension of previously developed audit programs. MATERIAL AND METHODS: The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. RESULTS: The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. DISCUSSION: Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs.
Assuntos
Radiometria/métodos , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Agências Internacionais , Imagens de Fantasmas , Controle de Qualidade , Dosímetros de Radiação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Dosimetria Termoluminescente/normasRESUMO
OBJECTIVE: The study focuses on the comparison of tissue reaction to titanium and bioresorbable implants with and without postoperative irradiation on an animal model. MATERIALS AND METHODS: Thirty-nine LEW/W rats were randomly assigned to experimental or control groups. One titanium and one bioresorbable screw (poly-L-lactide [PLLA] and L- and D-lactide poly-L/D-lactide [PDLLA]) were implanted into the left scapulas of 24 rats. Half of them received 30 Gy to the operation site and the other half received 42 Gy. In the control groups, 3 rats received 30 Gy, and 6 rats received 42 Gy to the scapula area without operation; and 6 rats had implants inserted as in the experimental group, but received no postoperative irradiation. The scapulas were removed 14 or 30 days after irradiation and a histologic analysis was performed. RESULTS: The host tissue reaction to titanium and PLLA-PDLLA screws without postoperative irradiation was of similar intensity. In irradiated animals, the inflammatory tissue reaction was more evident around the titanium screws than around the bioresorbable screws, irrespective of the radiation dose and of the time that elapsed from the irradiation. The reaction was more evident on the 14th day than on the 30th day after the last radiation dose (70 and 86 days after surgery, respectively). The intensity of the inflammatory tissue reaction, irrespective of the implant type, was more intense in the group irradiated with 42 Gy. CONCLUSIONS: PLLA-PDLLA implants appear to cause less tissue reaction after irradiation and could be safer reconstructive devices than titanium implants for patients undergoing surgery and adjuvant radiotherapy for cancer.
Assuntos
Parafusos Ósseos , Doses de Radiação , Escápula/efeitos da radiação , Escápula/cirurgia , Implantes Absorvíveis , Animais , Masculino , Osseointegração/efeitos da radiação , Osteogênese/efeitos da radiação , Projetos Piloto , Poliésteres , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Propriedades de Superfície , TitânioRESUMO
Unidos 10001, Unidos E (10008/10009) and Dose 1 electrometers from 14 radiotherapy centres were calibrated 3-4 times over a long period of time, together with Farmer type (PTW 30001, 30013, Nuclear Enterprises 2571 and Scanditronix-Wellhofer FC65G) cylindrical ionization chambers and plane-parallel type chambers (PTW Markus 23343 and Scanditronix-Wellhofer PPC05). On the basis of the long period of repetitive establishing of calibration coefficients for the same electrometers and ionization chambers, the accuracy of electrometers and the long-term stability of ionization chambers were examined. All measurements were carried out at the same laboratory, by the same staff, according to the same IAEA recommendations. A good accuracy and long-term stability of the dosimeters used in Polish radiotherapy centres was observed. These values were within 0.1% for electrometers and 0.2% for the chambers with electrometers. Furthermore, these values were not observed to vary over time. The observations confirm the opinion that the requirement of calibration of the dosimeters more often than every 2 years is not justified.
Assuntos
Calibragem/normas , Laboratórios/normas , Radiometria/instrumentação , Radiometria/normas , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Polônia , Dosagem Radioterapêutica , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments.
Assuntos
Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Dosimetria Termoluminescente/instrumentação , Algoritmos , Osso e Ossos/efeitos da radiação , Auditoria Clínica , Humanos , Pulmão/efeitos da radiação , Polônia , Poliestirenos/química , Garantia da Qualidade dos Cuidados de Saúde , Radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Termoluminescente/métodosRESUMO
PURPOSE: To evaluate the performance of computed tomography (CT) systems of various designs as a source of electron density (rho(el)) data for treatment planning of radiation therapy. MATERIAL AND METHODS: Dependence of CT numbers on relative electron density of tissue-equivalent materials (HU-rho(el) relationship) was measured for several general-purpose CT systems (single-slice, multislice, wide-bore multislice), for radiotherapy simulators with a single-slice CT and kV CBCT (cone-beam CT) options, as well as for linear accelerators with kV and MV CBCT systems. Electron density phantoms of four sizes were used. Measurement data were compared with the standard HU-rhoel relationships predefined in two commercial treatment-planning systems (TPS). RESULTS: The HU-rho(el) relationships obtained with all of the general-purpose CT scanners operating at voltages close to 120 kV were very similar to each other and close to those predefined in TPS. Some dependency of HU values on tube voltage was observed for bone- equivalent materials. For a given tube voltage, differences in results obtained for different phantoms were larger than those obtained for different CT scanners. For radiotherapy simulators and for kV CBCT systems, the information on rhoel was much less precise because of poor uniformity of images. For MV CBCT, the results were significantly different than for kV systems due to the differing energy spectrum of the beam. CONCLUSION: The HU-rho(el) relationships predefined in TPS can be used for general-purpose CT systems operating at voltages close to 120 kV. For nontypical imaging systems (e.g., CBCT), the relationship can be significantly different and, therefore, it should always be measured and carefully analyzed before using CT data for treatment planning.
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Elétrons , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentaçãoRESUMO
AIM: The purpose of the study was to examine the energy dependence of Gafchromic EBT radiochromic dosimetry films, in order to assess their potential use in intensity-modulated radiotherapy (IMRT) verifications. MATERIALS AND METHODS: The film samples were irradiated with doses from 0.1 to 12 Gy using photon beams from the energy range 1.25 MeV to 25 MV and the film response was measured using a flat-bed scanner. The samples were scanned and the film responses for different beam energies were compared. RESULTS: A high uncertainty in readout of the film response was observed for samples irradiated with doses lower than 1 Gy. The relative difference exceeds 20% for doses lower than 1 Gy while for doses over 1 Gy the measured film response differs by less than 5% for the whole examined energy range. The achieved uncertainty of the experimental procedure does not reveal any energy dependence of Gafchromic EBT film response in the investigated energy range. CONCLUSIONS: Gafchromic EBT film does not show any energy dependence in the conditions typical for IMRT but the doses measured for pre-treatment plan verifications should exceed 1 Gy.
RESUMO
AIM: The purpose of this study was to examine the usefulness of using Simultaneous Integrated Boost (SIB) radiotherapy for thyroid cancer treatment. BACKGROUND: At our hospital a 3D Conformal RadioTherapy (3D-CRT) technique involving photon and electron beams for the treatment of thyroid cancer was often used.(1) High dose to the spinal canal was limiting the total dose of such a treatment. After investigation of Intensity Modulated Radiotherapy (IMRT) technique involving seven photon beams for first course of treatment(3) we decided to examine possibility of reducing treatment fractions by using SIB radiotherapy. MATERIAL AND METHODS: Plans for 10 patients were studied. For each patient, IMRT plan for the first course of treatment (50 Gy for PTV), two plans for the second course of treatment (10 Gy for BOOST) and a SIB plan (50 Gy for PTV, 56 Gy for BOOST) were prepared. For all plans, comparisons of dose statistics for the PTV, BOOST, PTV without BOOST (defined as PTV without BOOST with 1 cm margin), spinal canal and Patient Outline (Body) was done. RESULTS: Minimum dose for BOOST is higher in the SIB technique than in the two course treatment. PTV without BOOST receives the same average dose in SIB and the 1st course IMRT - 50.10 Gy and 49.84 Gy, respectively. In the SIB technique, higher reduction of dose delivered to the spinal canal is possible (27 Gy compared with 30 Gy). CONCLUSION: SIB therapy for thyroid cancer with relation to typical two course treatment is a good proposal of reducing the number of fractions with the same dose for BOOST and PTV without BOOST. Additionally, better sparing of the spinal canal is achieved.
RESUMO
BACKGROUND: Restenosis is the complete occlusion of the blood vessel leading to such complications as ischemia/angina, myocardial infarction, and death. It can be managed by endovascular brachytherapy with both gamma and beta sources. Endovascular brachytherapy is performed worldwide on several thousands of cases per year. The gamma-emitter 192Ir as well as the beta-emitters 32P and 90Sr are mainly used. The dose to the occluded endothelial wall is 20 Gy. Interestingly, no information with respect to the dose absorbed by the blood during the course of the treatment exists. The aim of the present investigation was to verify if the micronucleus test is suitable to detect the dose absorbed by lymphocytes in the course of endovascular brachytherapy with 32P. MATERIALS AND METHODS: Blood was drawn from 16 patients immediately before and 1 day after the treatment. Frequencies of micronuclei were assessed. In order to ensure that the micronuclei did not arise due to fluoroscopy or reperfusion, we analyzed lymphocytes of 16 control patients who underwent interventional cardiology with balloon angioplasty only. RESULTS AND CONCLUSIONS: Enhanced frequencies of micronuclei were observed in lymphocytes of some donors following brachytherapy. No correlation could be detected between the level of induced micronuclei and the absorbed dose. Also, no effect of fluoroscopy or reperfusion was seen. Thus, although brachytherapy of restenosis with 32P leads to weak enhancement of the micronucleus frequency in lymphocytes, the effect was not seen in all patients; the reason for this heterogeneous response remains to be elucidated.
Assuntos
Angioplastia Coronária com Balão/métodos , Braquiterapia/métodos , Reestenose Coronária/radioterapia , Linfócitos/ultraestrutura , Micronúcleo Germinativo/efeitos da radiação , Células Cultivadas , Reestenose Coronária/sangue , Seguimentos , Humanos , Linfócitos/efeitos da radiação , Micronúcleo Germinativo/ultraestrutura , Resultado do TratamentoRESUMO
BACKGROUND AND PURPOSE: A strategy for national TLD audit programmes has been developed by the International Atomic Energy Agency (IAEA). It involves progression through three sequential dosimetry audit steps. The first step audits are for the beam output in reference conditions for high-energy photon beams. The second step audits are for the dose in reference and non-reference conditions on the beam axis for photon and electron beams. The third step audits involve measurements of the dose in reference, and non-reference conditions off-axis for open and wedged symmetric and asymmetric fields for photon beams. Through a co-ordinated research project the IAEA developed the methodology to extend the scope of national TLD auditing activities to more complex audit measurements for regular fields. MATERIALS AND METHODS: Based on the IAEA standard TLD holder for high-energy photon beams, a TLD holder was developed with horizontal arm to enable measurements 5cm off the central axis. Basic correction factors were determined for the holder in the energy range between Co-60 and 25MV photon beams. RESULTS: New procedures were developed for the TLD irradiation in hospitals. The off-axis measurement methodology for photon beams was tested in a multi-national pilot study. The statistical distribution of dosimetric parameters (off-axis ratios for open and wedge beam profiles, output factors, wedge transmission factors) checked in 146 measurements was 0.999+/-0.012. CONCLUSIONS: The methodology of TLD audits in non-reference conditions with a modified IAEA TLD holder has been shown to be feasible.
Assuntos
Radioterapia de Alta Energia/normas , Dosimetria Termoluminescente/normas , Estudos de Viabilidade , Humanos , Agências Internacionais , Auditoria Médica , Fótons , Projetos Piloto , Controle de Qualidade , Radiometria , Dosagem Radioterapêutica/normas , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The aim of our study was to test the impact of acute lumen overdilation on neointimal hyperplasia and late lumen size after vascular brachytherapy for in-stent restenosis (ISR). METHODS: Forty-seven ISR lesions located in 47 coronary arteries in 44 consecutive patients underwent beta brachytherapy with serial intravascular ultrasound studies. Vessel, lumen, and stent cross-sectional area were measured at 1-mm steps. Based on an interpolated reference cross-sectional area, each cross section was assessed as overdilated (lumen cross-sectional area>interpolated reference cross-sectional area) or not overdilated (lumen cross-sectional area Assuntos
Braquiterapia/métodos
, Reestenose Coronária/radioterapia
, Stents
, Túnica Íntima/efeitos da radiação
, Angioplastia com Balão
, Angiografia Coronária
, Reestenose Coronária/diagnóstico por imagem
, Reestenose Coronária/terapia
, Dilatação Patológica
, Feminino
, Humanos
, Hiperplasia
, Modelos Lineares
, Masculino
, Pessoa de Meia-Idade
, Recidiva
, Estudos Retrospectivos
, Resultado do Tratamento
, Túnica Íntima/diagnóstico por imagem
, Túnica Íntima/patologia
, Ultrassonografia de Intervenção