Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712663

RESUMO

Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.

2.
Mol Ther ; 32(2): 440-456, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38213031

RESUMO

Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.


Assuntos
Neoplasias do Sistema Nervoso Central , MicroRNAs , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecção por Zika virus , Zika virus , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Zika virus/genética , MicroRNAs/genética , Infecção por Zika virus/terapia , Terapia Viral Oncolítica/métodos
3.
Cell Rep ; 42(6): 112561, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243590

RESUMO

Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/ß-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional ß-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.


Assuntos
Fatores de Transcrição Forkhead , Glioblastoma , Via de Sinalização Wnt , Humanos , beta Catenina/metabolismo , Divisão Celular , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glioblastoma/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo
4.
Neuron ; 110(23): 3936-3951.e10, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174572

RESUMO

Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNß) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNß treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Células Mieloides , Células-Tronco , Interferons
5.
World Neurosurg ; 153: 79-83, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229102

RESUMO

The use of intraoperative ultrasound in emergency cranial neurosurgical procedures is not well described. It may improve surgical outcomes and is useful when other neuro-navigation systems are not readily available. We provide a practical guide for neurosurgical trainees to utilize ultrasound for various emergency cranial neurosurgical procedures, including lesion localization, insertion of an external ventricular drain, and shunt revision surgery. Intraoperative ultrasound is a useful modality for urgent neurosurgical procedures.


Assuntos
Neurorradiografia/métodos , Neurocirurgia/métodos , Procedimentos Neurocirúrgicos/métodos , Ultrassonografia/métodos , Humanos , Apoio ao Desenvolvimento de Recursos Humanos
6.
Lab Chip ; 21(12): 2343-2358, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33969368

RESUMO

Glioblastoma multiforme (GBM) is the most common and the most aggressive type of primary brain malignancy. Glioblastoma stem-like cells (GSCs) can migrate in vascular niches within or away from the tumour mass, increasing tumour resistance to treatments and contributing to relapses. To study individual GSC migration and their interactions with the perivasculature of the tumour microenvironment, there is a need to develop a human organotypic in vitro model. Herein, we demonstrated a perivascular niche-on-a-chip, in a serum-free condition with gravity-driven flow, that supported the stemness of patient-derived GSCs and foetal neural stem cells grown in a three-dimensional environment (3D). Endothelial cells from three organ origins, (i) human brain microvascular endothelial cells (hCMEC/D3), (ii) human umbilical vein endothelial cells (HUVECs) and, (iii) human lung microvascular endothelial cells (HMVEC-L) formed rounded microvessels within the extracellular-matrix integrated microfluidic chip. By optimising cell extraction protocols, systematic studies were performed to evaluate the effects of serum-free media, 3D cell cultures, and the application of gravity-driven flow on the characteristics of endothelial cells and their co-culture with GSCs. Our results showed the maintenance of adherent and tight junction markers of hCMEC/D3 in the serum-free culture and that gravity-driven flow was essential to support adequate viability of both the microvessel and the GSCs in co-culture (>80% viability at day 3). Endpoint biological assays showed upregulation of neovascularization-related genes (e.g., angiopoietins, vascular endothelial growth factor receptors) in endothelial cells co-cultured with GSCs in contrast to the neural stem cell reference that showed insignificant changes. The on-chip platform further permitted live-cell imaging of GSC - microvessel interaction, enabling quantitative analysis of GSC polarization and migration. Overall, our comparative genotypic (i.e. qPCR) and phenotypic (i.e. vessel permeability and GSC migration) studies showed that organotypic (brain cancer cells-brain endothelial microvessel) interactions differed from those within non-tissue specific vascular niches of human origin. The development and optimization of this on-chip perivascular niche, in a serum-free flowable culture, could provide the next level of complexity of an in vitro system to study the influence of glioma stem cells on brain endothelium.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Células-Tronco Neoplásicas , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
7.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32588846

RESUMO

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Assuntos
Benzimidazóis/química , Hidrocarbonetos Aromáticos com Pontes/química , Compostos Heterocíclicos com 3 Anéis/química , Imidazóis/química , Teoria da Densidade Funcional , Modelos Químicos , Máquina de Vetores de Suporte
8.
Oper Neurosurg (Hagerstown) ; 18(2): E44, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162594

RESUMO

Cavernous malformations (cavernomas) of the brain stem with recurrent hemorrhage may be amenable to microsurgical resection if they are present close to the surface. The risks of surgery need to be balanced with the natural history of the lesion and the accumulation of neurological deficits and risk to life with multiple hemorrhages. In this 3D operative video, we illustrate the technique for the resection of a dorsally located midbrain cavernous malformation. Informed consent was obtained for this procedure. The cavernoma is accessed with the use of a supracerebellar infratentorial approach. The infratentorial craniotomy and coagulation of the superior vermian veins is shown. A description is provided of the use of hemosiderin staining and the intercollicular relative "safe zone"1 as landmarks for the neurotomy. The technique of cavernoma dissection from the surrounding gliotic plane is shown and described. In this case, the patient required prolonged rehabilitation but fully recovered without residual deficit 1 yr following surgery.


Assuntos
Neoplasias do Tronco Encefálico/cirurgia , Cerebelo/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Imageamento Tridimensional/métodos , Transtornos da Visão/cirurgia , Neoplasias do Tronco Encefálico/complicações , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Procedimentos de Cirurgia Plástica/métodos , Transtornos da Visão/diagnóstico por imagem , Transtornos da Visão/etiologia
9.
J Pathol ; 247(4): 422-434, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565681

RESUMO

The overall survival for patients with primary glioblastoma is very poor. Glioblastoma contains a subpopulation of glioma stem cells (GSC) that are responsible for tumour initiation, treatment resistance and recurrence. PPARα is a transcription factor involved in the control of lipid, carbohydrate and amino acid metabolism. We have recently shown that PPARα gene and protein expression is increased in glioblastoma and has independent clinical prognostic significance in multivariate analyses. In this work, we report that PPARα is overexpressed in GSC compared to foetal neural stem cells. To investigate the role of PPARα in GSC, we knocked down its expression using lentiviral transduction with short hairpin RNA (shRNA). Transduced GSC were tagged with luciferase and stereotactically xenografted into the striatum of NOD-SCID mice. Bioluminescent and magnetic resonance imaging showed that knockdown (KD) of PPARα reduced the tumourigenicity of GSC in vivo. PPARα-expressing control GSC xenografts formed invasive histological phenocopies of human glioblastoma, whereas PPARα KD GSC xenografts failed to establish viable intracranial tumours. PPARα KD GSC showed significantly reduced proliferative capacity and clonogenic potential in vitro with an increase in cellular senescence. In addition, PPARα KD resulted in significant downregulation of the stem cell factors c-Myc, nestin and SOX2. This was accompanied by downregulation of the PPARα-target genes and key regulators of fatty acid oxygenation ACOX1 and CPT1A, with no compensatory increase in glycolytic flux. These data establish the aberrant overexpression of PPARα in GSC and demonstrate that this expression functions as an important regulator of tumourigenesis, linking self-renewal and the malignant phenotype in this aggressive cancer stem cell subpopulation. We conclude that targeting GSC PPARα expression may be a therapeutically beneficial strategy with translational potential as an adjuvant treatment. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , PPAR alfa/metabolismo , RNA Interferente Pequeno/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Lentivirus , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais/fisiologia , Transplante Heterólogo , Células Tumorais Cultivadas
10.
Oper Neurosurg (Hagerstown) ; 17(3): E109, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566693

RESUMO

This 3-dimensional operative video covers the suboccipital approach to a brainstem cavernoma of the floor of the fourth ventricle. Brainstem cavernomas are low-flow vascular lesions associated with a 2% to 6% annual bleed rate. Repeated bleeds typically result in progressive neurological deficit, and especially for exophytic lesions surgery may arrest this progression without significantly exacerbating pre-existing deficits. The approach to these lesions may be via any standard skull base approach, dictated in each lesion by the presentation to the pial surface. Here, we describe a suboccipital approach to an exophytic cavernoma of the floor of the fourth ventricle, arising caudal to the medial longitudinal fasciculus and facial colliculus. The 38-yr-old male patient had suffered a stepwise neurological deterioration secondary to repeated bleeds, and complete resection of the cavernoma demonstrated here arrested this progression. The patient has provided signed consent to video acquisition and storage at operation, and to publication of this material.

11.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567396

RESUMO

The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200⁻3500 cm-1. An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels.


Assuntos
Neoplasias Encefálicas/diagnóstico , Máquina de Vetores de Suporte , Humanos , Sensibilidade e Especificidade , Espectrofotometria Infravermelho
12.
PLoS One ; 13(3): e0193721, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554126

RESUMO

Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Procedimentos Neurocirúrgicos , Neoplasias Encefálicas/cirurgia , Análise por Conglomerados , Humanos , Período Intraoperatório , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado
13.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389893

RESUMO

Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400-1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Imagem Óptica , Análise Espectral , Algoritmos , Bases de Dados Factuais , Humanos
14.
Genes Dev ; 31(8): 757-773, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465359

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3, Plk1, Mycn, Dnmt1, Dnmt3b, and Tet3). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis-regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1-null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Epigenômica , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/fisiopatologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Fatores de Transcrição SOXB1/genética , Motivos de Aminoácidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Azacitidina/farmacologia , Neoplasias Encefálicas/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cromatina/metabolismo , Metilação de DNA , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Humanos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
15.
Development ; 144(4): 635-648, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096221

RESUMO

Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable - experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis.


Assuntos
Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Marcação de Genes/métodos , Glioma/genética , Células-Tronco Neurais/citologia , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/metabolismo , Mapeamento de Epitopos , Epitopos , Glioma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Recombinação Homóloga , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Oligonucleotídeos/genética , Mutação Puntual , Recombinação Genética , Medicina Regenerativa , Transgenes
16.
Mol Neurobiol ; 54(5): 3893-3905, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27541285

RESUMO

Glioblastoma is the most common form of primary malignant brain tumour. These tumours are highly proliferative and infiltrative resulting in a median patient survival of only 14 months from diagnosis. The current treatment regimens are ineffective against the small population of cancer stem cells residing in the tumourigenic niche; however, a new therapeutic approach could involve the removal of these cells from the microenvironment that maintains the cancer stem cell phenotype. We have isolated multipotent sphere-forming cells from human high grade glioma (glioma sphere-forming cells (GSCs)) to investigate the adhesive and migratory properties of these cells in vitro. We have focused on the role of two closely related metalloproteinases ADAM10 and ADAM17 due to their high expression in glioblastoma and GSCs and their ability to activate cytokines and growth factors. Here, we report that ADAM10 and ADAM17 inhibition selectively increases GSC, but not neural stem cell, migration and that the migrated GSCs exhibit a differentiated phenotype. We also observed a correlation between nestin, a stem/progenitor marker, and fibronectin, an extracellular matrix protein, expression in high grade glioma tissues. GSCs adherence on fibronectin is mediated by α5ß1 integrin, where fibronectin further promotes GSC migration and is an effective candidate for in vivo cancer stem cell migration out of the tumourigenic niche. Our results suggest that therapies against ADAM10 and ADAM17 may promote cancer stem cell migration away from the tumourigenic niche resulting in a differentiated phenotype that is more susceptible to treatment.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Movimento Celular , Esferoides Celulares/metabolismo , Adulto , Idoso , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Feminino , Fibronectinas/farmacologia , Glioblastoma/patologia , Humanos , Integrina alfa5beta1/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
17.
Stem Cell Reports ; 5(5): 829-842, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607953

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stemcell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stemcells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Herewe find only a subset ofGSCcultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy forGBM.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Pontos de Checagem do Ciclo Celular , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOX/metabolismo
18.
Cancer Lett ; 326(1): 79-87, 2012 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-22841667

RESUMO

It has been proposed that gliomas contain a subpopulation of 'Brain Tumor Stem Cells' (BTSCs), which demonstrate resistance to conventional therapies. A potential component of the environment governing the behavior of these BTSCs is a class of transmembrane proteins with structural and signaling functions, the A-Disintegrin And Metalloproteases (ADAMs). In this study we confirm overexpression of ADAM10 and 17 in human glioma tissue compared to human controls, and especially in tumor sphere cultures thought to enrich for BTSCs. Inhibition of ADAM10/17 function impairs the growth of tumor spheres with evidence of depletion of the sphere forming cell population. This results from a combination of reduced proliferation, cell death and a switch of sphere-forming cells away from symmetric self-renewal division towards neuronal differentiation. A developing appreciation of the role of ADAMs in BTSC promises insights into pathophysiology and potential therapeutic avenues in this intractable group of tumors.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM10 , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Fertilinas , Humanos
19.
Acta Neurochir (Wien) ; 154(2): 291-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21892636

RESUMO

We report a case of histologically proven pilocytic astrocytoma arising within the cavernous sinus, confirmed radiographically and at operation. We discuss the implications in the context of previous reports of ectopic glioma origin. In particular, the possiblity of glioma development within glial cell islands in the peripheral segment of cranial nerves is explored.


Assuntos
Astrocitoma/diagnóstico , Astrocitoma/cirurgia , Seio Cavernoso/cirurgia , Adulto , Astrocitoma/patologia , Seio Cavernoso/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética
20.
Br J Neurosurg ; 26(2): 222-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21973062

RESUMO

We report four cases of communicating hydrocephalus, requiring shunt placement, in the subset of patients whose ventricles were breached at the time of glioma resection (a total 97 cases over 3 years). The hydrocephalus in these cases presented without ventricular dilatation on computed tomography (CT) scanning, and in 3 cases without headache. Failure to progress, visual deterioration or cerebrospinal fluid (CSF) leak in the post-operative patient after tumour resection with ventricular opening should alert clinicians to the possibility of hydrocephalus, despite the absence of headache or ventriculomegaly, and lumbar puncture should be performed without delay.


Assuntos
Astrocitoma/cirurgia , Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Glioma/cirurgia , Hidrocefalia/etiologia , Complicações Pós-Operatórias/etiologia , Adulto , Ventrículos Cerebrais/cirurgia , Feminino , Transtornos da Cefaleia/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Derivação Ventriculoperitoneal/métodos , Transtornos da Visão/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA