Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 30(8): 2729-2742.e4, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101748

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features a near-universal mutation in KRAS. Additionally, the tumor suppressor PTEN is lost in ∼10% of patients, and in mouse models, this dramatically accelerates tumor progression. While oncogenic KRAS and phosphatidylinositol 3-kinase (PI3K) cause divergent metabolic phenotypes individually, how they synergize to promote tumor metabolic alterations and dependencies remains unknown. We show that in KRAS-driven murine PDAC cells, loss of Pten strongly enhances both mTOR signaling and macropinocytosis. Protein scavenging alleviates sensitivity to mTOR inhibition by rescuing AKT phosphorylation at serine 473 and consequently cell proliferation. Combined inhibition of mTOR and lysosomal processing of internalized protein eliminates the macropinocytosis-mediated resistance. Our results indicate that mTORC2, rather than mTORC1, is an important regulator of protein scavenging and that protein-mediated resistance could explain the lack of effectiveness of mTOR inhibitors in certain genetic backgrounds. Concurrent inhibition of mTOR and protein scavenging might be a valuable therapeutic approach.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Pinocitose , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Neoplasias Pancreáticas
2.
Cell Metab ; 30(6): 1055-1074.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31708446

RESUMO

Accumulation of lactate in the tissue microenvironment is a feature of both inflammatory disease and cancer. Here, we assess the response of immune cells to lactate in the context of chronic inflammation. We report that lactate accumulation in the inflamed tissue contributes to the upregulation of the lactate transporter SLC5A12 by human CD4+ T cells. SLC5A12-mediated lactate uptake into CD4+ T cells induces a reshaping of their effector phenotype, resulting in increased IL17 production via nuclear PKM2/STAT3 and enhanced fatty acid synthesis. It also leads to CD4+ T cell retention in the inflamed tissue as a consequence of reduced glycolysis and enhanced fatty acid synthesis. Furthermore, antibody-mediated blockade of SLC5A12 ameliorates the disease severity in a murine model of arthritis. Finally, we propose that lactate/SLC5A12-induced metabolic reprogramming is a distinctive feature of lymphoid synovitis in rheumatoid arthritis patients and a potential therapeutic target in chronic inflammatory disorders.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Inflamação/imunologia , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Simportadores/fisiologia , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Feminino , Glicólise , Humanos , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética
3.
Cancer Discov ; 9(5): 617-627, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837243

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Lisofosfatidilcolinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Estromais/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Transdução de Sinais , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Rep ; 18(3): 647-658, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099844

RESUMO

Acetyl-CoA is a key metabolic intermediate with an important role in transcriptional regulation. The nuclear-cytosolic acetyl-CoA synthetase 2 (ACSS2) was found to sustain the growth of hypoxic tumor cells. It generates acetyl-CoA from acetate, but exactly which pathways it supports is not fully understood. Here, quantitative analysis of acetate metabolism reveals that ACSS2 fulfills distinct functions depending on its cellular location. Exogenous acetate uptake is controlled by expression of both ACSS2 and the mitochondrial ACSS1, and ACSS2 supports lipogenesis. The mitochondrial and lipogenic demand for two-carbon acetyl units considerably exceeds the uptake of exogenous acetate, leaving it to only sparingly contribute to histone acetylation. Surprisingly, oxygen and serum limitation increase nuclear localization of ACSS2. We find that nuclear ACSS2 recaptures acetate released from histone deacetylation for recycling by histone acetyltransferases. Our work provides evidence for limited equilibration between nuclear and cytosolic acetyl-CoA and demonstrates that ACSS2 retains acetate to maintain histone acetylation.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Hipóxia Celular , Histonas/metabolismo , Acetato-CoA Ligase/antagonistas & inibidores , Acetato-CoA Ligase/genética , Acetatos/química , Acetilcoenzima A/metabolismo , Acetilação , Isótopos de Carbono/química , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Humanos , Espectrometria de Massas , Metaboloma , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Soro/química
5.
Cancer Metab ; 4(1): 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594997

RESUMO

BACKGROUND: Acetyl-CoA is a key metabolic intermediate with roles in the production of energy and biomass, as well as in metabolic regulation. It was recently found that acetate is crucial for maintaining acetyl-CoA production in hypoxic cancer cells. However, the availability of free acetate in the tumor environment and how much tumor cells consume remains unknown. Similarly, much is still to be learned about changes in the dynamics and distribution of acetylation in response to tumor-relevant conditions. The analysis of acetate is non-trivial, and to help address these topics, we developed a rapid and robust method for the analysis of both free and bound acetate in biological samples. RESULTS: We developed a sensitive and high-throughput method for the analysis of acetate based on alkylation to its propyl derivative and gas chromatography-mass spectrometry. The method facilitates simultaneous quantification of both (12)C- and (13)C-acetate, shows high reproducibility (< 10 % RSD), and has a wide linear range of quantification (2-2000 µM). We demonstrate the method's utility by measuring free acetate uptake by cultured cancer cells and by quantifying total acetylation (using hydrolysis) in separate cellular compartments. Additionally, we measure free acetate in tissues and bio-fluids and show that there are considerable differences in acetate concentrations between organs in vivo, providing insights into its complex systemic metabolism and availability for various types of tumors. CONCLUSIONS: Our approach for the quantification of acetate is straightforward to implement using widely available equipment and reagents, and will aid in in-depth investigation of various aspects of acetate metabolism. It is also readily adaptable to the analysis of formate and short-chain fatty acids, making it highly relevant to the cancer metabolism community.

6.
Br J Cancer ; 115(6): 635-40, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27537393

RESUMO

Cancer is fundamentally a disease of uncontrolled cell proliferation. Tumour metabolism has emerged as an exciting new discipline studying how cancer cells obtain the necessary energy and cellular 'building blocks' to sustain growth. Glucose and glutamine have long been regarded as the key nutrients fuelling tumour growth. However, the inhospitable tumour microenvironment of certain cancers, like pancreatic cancer, causes the supply of these nutrients to be chronically insufficient for the demands of proliferating cancer cells. Recent work has shown that cancer cells are able to overcome this nutrient insufficiency by scavenging alternative substrates, particularly proteins and lipids. Here, we review recent work identifying the endocytic process of macropinocytosis and subsequent lysosomal processing as an important substrate-acquisition route. In addition, we discuss the impact of hypoxia on fatty acid metabolism and the relevance of exogenous lipids for supporting tumour growth as well as the routes by which tumour cells can access these lipids. Together, these cancer-specific scavenging pathways provide a promising opportunity for therapeutic intervention.


Assuntos
Neoplasias/metabolismo , Animais , Autofagia , Divisão Celular , Hipóxia Celular , Metabolismo Energético , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Substâncias Macromoleculares/metabolismo , Metabolômica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Neoplasias/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Pinocitose/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
7.
Nat Cell Biol ; 17(10): 1317-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302408

RESUMO

Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.


Assuntos
Ácido Aspártico/biossíntese , Proliferação de Células , Ácido Pirúvico/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Immunoblotting , Rim/citologia , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Metabolômica/métodos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Piruvato Carboxilase/metabolismo , Interferência de RNA , Succinato Desidrogenase/genética
8.
Cancer Cell ; 27(1): 57-71, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25584894

RESUMO

A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment.


Assuntos
Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Ácidos Graxos/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Estresse Fisiológico
9.
Exp Parasitol ; 125(2): 147-51, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20093117

RESUMO

Plasmodium falciparum lacks the de novo purine biosynthesis pathway and relies entirely on the salvage pathway to meet its purine nucleotide requirements. The entire flux for purine nucleotide biosynthesis in the parasite is believed to be through hypoxanthine guanine phosphoribosyltransferase (HGPRT), with the enzymes, adenosine kinase and adenine phosphoribosyltransferase (APRT) being unannotated in the Plasmodium genome database. This manuscript reports on the studies carried out to explore bypass mechanisms, if any, for AMP synthesis in the intraerythrocyitc stages of the parasite life cycle. Uptake and subsequent incorporation of radiolabel adenine in the nucleotide pool of saponin released erythrocyte free parasites implicated the role of parasite encoded enzymes in adenine metabolism. To explore the route for AMP synthesis in the parasite, we have monitored adenine mediated supplementation of metabolic viability in saponin released hadacidin (N-formyl-N-hydroxyglycine) treated parasites. Our results implicate the role of an APRT like activity that enables parasite survival when the flux through the HGPRT pathway is blocked.


Assuntos
Adenina/metabolismo , Plasmodium falciparum/metabolismo , Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipoxantina/metabolismo , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia
10.
Biochim Biophys Acta ; 1794(4): 642-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19111634

RESUMO

Adenylosuccinate lyase (ASL) catalyzes two distinct but chemically similar reactions in purine biosynthesis. The first, exclusive to the de novo pathway involves the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate and the second common to both de novo and the salvage pathways involves the cleavage of succinyl-adenosine monophosphate (SAMP) to AMP and fumarate. A detailed kinetic and catalytic mechanism of the recombinant His-tagged ASL from Plasmodium falciparum (PfASL) is presented here. Initial velocity kinetics, product inhibition studies and transient kinetics indicate a Uni-Bi rapid equilibrium ordered mechanism. Substrate and solvent isotope effect studies implicate the process of C(gamma)-N bond cleavage to be rate limiting. Interestingly, the effect of pH on k(cat) and k(cat)/K(m) highlight ionization of the base only in the enzyme substrate complex and not in the enzyme alone, thereby implicating the pivotal role of the substrate in the activation of the catalytic base. Site-directed mutagenesis implicates a key role for the conserved serine (S298) in catalysis. Despite the absence of a de novo pathway for purine synthesis and most importantly, the absence of other enzymes that can metabolise AICAR in P. falciparum, PfASL catalyzes the SAICAR cleavage reaction with kinetic parameters similar to those of SAMP reaction and binds AICAR with affinity similar to that of AMP. The presence of this catalytic feature allows the use of AICAR or its analogues as inhibitors of PfASL and hence, as novel putative anti-parasitic agents. In support of this, we do see a dose dependent inhibition of parasite growth in the presence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAriboside) with half-maximal inhibition at 167+/-5 microM.


Assuntos
Adenilossuccinato Liase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Biocatálise , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA