Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(11): 1870-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946084

RESUMO

Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Ácido Pantotênico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Vitaminas
2.
Metabolites ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837881

RESUMO

The colocation of elemental species with host biomolecules such as lipids and metabolites may shed new light on the dysregulation of metabolic pathways and how these affect disease pathogeneses. Alkali metals have been the subject of extensive research, are implicated in various neurodegenerative and infectious diseases and are known to disrupt lipid metabolism. Desorption electrospray ionisation (DESI) is a widely used approach for molecular imaging, but previous work has shown that DESI delocalises ions such as potassium (K) and chlorine (Cl), precluding the subsequent elemental analysis of the same section of tissue. The solvent typically used for the DESI electrospray is a combination of methanol and water. Here we show that a novel solvent system, (50:50 (%v/v) MeOH:EtOH) does not delocalise elemental species and thus enables elemental mapping to be performed on the same tissue section post-DESI. Benchmarking the MeOH:EtOH electrospray solvent against the widely used MeOH:H2O electrospray solvent revealed that the MeOH:EtOH solvent yielded increased signal-to-noise ratios for selected lipids. The developed multimodal imaging workflow was applied to a lung tissue section containing a tuberculosis granuloma, showcasing its applicability to elementally rich samples displaying defined structural information.

3.
J Am Soc Mass Spectrom ; 33(12): 2263-2272, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36398943

RESUMO

Characterizing proton beam damage in biological materials is of interest to enable the integration of proton microprobe elemental mapping techniques with other imaging modalities. It is also of relevance to obtain a deeper understanding of mechanical damage to lipids in tissues during proton beam cancer therapy. We have developed a novel strategy to characterize proton beam damage to lipids in biological tissues based on mass spectrometry imaging. This methodology is applied to characterize changes to lipids in tissues ex vivo, irradiated under different conditions designed to mitigate beam damage. This work shows that performing proton beam irradiation at ambient pressure, as well as including the application of an organic matrix prior to irradiation, can reduce damage to lipids in tissues. We also discovered that, irrespective of proton beam irradiation, placing a sample in a vacuum prior to desorption electrospray ionization imaging can enhance lipid signals, a conclusion that may be of future benefit to the mass spectrometry imaging community.


Assuntos
Imagem Multimodal , Prótons
4.
Theranostics ; 12(5): 2162-2174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265205

RESUMO

Gaining insight into the heterogeneity of nanoparticle drug distribution within tumors would improve both design and clinical translation of nanomedicines. There is little data showing the spatio-temporal behavior of nanomedicines in tissues as current methods are not able to provide a comprehensive view of the nanomedicine distribution, released drug or its effects in the context of a complex tissue microenvironment. Methods: A new experimental approach which integrates the molecular imaging and bioanalytical technologies MSI and IMC was developed to determine the biodistribution of total drug and drug metabolite delivered via PLA-PEG nanoparticles and to overlay this with imaging of the nanomedicine in the context of detailed tumor microenvironment markers. This was used to assess the nanomedicine AZD2811 in animals bearing three different pre-clinical PDX tumors. Results: This new approach delivered new insights into the nanoparticle/drug biodistribution. Mass spectrometry imaging was able to differentiate the tumor distribution of co-dosed deuterated non-nanoparticle-formulated free drug alongside the nanoparticle-formulated drug by directly visualizing both delivery approaches within the same animal or tissue. While the IV delivered free drug was uniformly distributed, the nanomedicine delivered drug was heterogeneous. By staining for multiple biomarkers of the tumor microenvironment on the same tumor sections using imaging mass cytometry, co-registering and integrating data from both imaging modalities it was possible to determine the features in regions with highest nanomedicine distribution. Nanomedicine delivered drug was associated with regions higher in macrophages, as well as more stromal regions of the tumor. Such a comparison of complementary molecular data allows delineation of drug abundance in individual cell types and in stroma. Conclusions: This multi-modal imaging solution offers researchers a better understanding of drug and nanocarrier distribution in complex tissues and enables data-driven drug carrier design.


Assuntos
Nanopartículas , Neoplasias , Animais , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Imagem Molecular , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Distribuição Tecidual , Microambiente Tumoral
5.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35005896

RESUMO

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos , Imagem Multimodal , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gencitabina
6.
Anal Chem ; 93(6): 3061-3071, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33534548

RESUMO

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.


Assuntos
Aprendizado Profundo , Animais , Técnicas Histológicas , Camundongos , Imagem Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de Trabalho
7.
Anal Chem ; 93(5): 2767-2775, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33474935

RESUMO

Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).


Assuntos
Descontaminação/métodos , Raios Ultravioleta , Animais , Azetidinas/análise , Azetidinas/uso terapêutico , COVID-19/patologia , COVID-19/virologia , Neoplasias de Cabeça e Pescoço/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Metaboloma , Naftalenos/análise , Naftalenos/uso terapêutico , Fotólise/efeitos da radiação , Ratos , Ratos Wistar , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray/métodos , Terfenadina/química , Inativação de Vírus/efeitos da radiação
8.
Nat Genet ; 53(1): 16-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414552

RESUMO

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Assuntos
Neoplasias Colorretais/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Regiões 5' não Traduzidas/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Carcinogênese/patologia , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Estimativa de Kaplan-Meier , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/metabolismo , Metástase Neoplásica , Oncogenes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Magn Reson Med ; 85(6): 3027-3035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421253

RESUMO

PURPOSE: To compare carbon-13 (13 C) MRSI of hyperpolarized [1-13 C]pyruvate metabolism in a murine tumor model with mass spectrometric (MS) imaging of the corresponding tumor sections in order to cross validate these metabolic imaging techniques and to investigate the effects of pyruvate delivery and tumor lactate concentration on lactate labeling. METHODS: [1-13 C]lactate images were obtained from tumor-bearing mice, following injection of hyperpolarized [1-13 C]pyruvate, using a single-shot 3D 13 C spectroscopic imaging sequence in vivo and using desorption electrospray ionization MS imaging of the corresponding rapidly frozen tumor sections ex vivo. The images were coregistered, and levels of association were determined by means of Spearman rank correlation and Cohen kappa coefficients as well as linear mixed models. The correlation between [1-13 C]pyruvate and [1-13 C]lactate in the MRS images and between [12 C] and [1-13 C]lactate in the MS images were determined by means of Pearson correlation coefficients. RESULTS: [1-13 C]lactate images generated by MS imaging were significantly correlated with the corresponding MRS images. The correlation coefficient between [1-13 C]lactate and [1-13 C]pyruvate in the MRS images was higher than between [1-13 C]lactate and [12 C]lactate in the MS images. CONCLUSION: The inhomogeneous distribution of labeled lactate observed in the MRS images was confirmed by MS imaging of the corresponding tumor sections. The images acquired using both techniques show that the rate of 13 C label exchange between the injected pyruvate and endogenous tumor lactate pool is more correlated with the rate of pyruvate delivery to the tumor cells and is less affected by the endogenous lactate concentration.


Assuntos
Linfoma , Ácido Pirúvico , Animais , Isótopos de Carbono , Ácido Láctico , Linfoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectrometria de Massas , Camundongos
10.
Anal Chem ; 93(4): 2309-2316, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33395266

RESUMO

Mass spectrometry imaging can produce large amounts of complex spectral and spatial data. Such data sets are often analyzed with unsupervised machine learning approaches, which aim at reducing their complexity and facilitating their interpretation. However, choices made during data processing can impact the overall interpretation of these analyses. This work investigates the impact of the choices made at the peak selection step, which often occurs early in the data processing pipeline. The discussion is done in terms of visualization and interpretation of the results of two commonly used unsupervised approaches: t-distributed stochastic neighbor embedding and k-means clustering, which differ in nature and complexity. Criteria considered for peak selection include those based on hypotheses (exemplified herein in the analysis of metabolic alterations in genetically engineered mouse models of human colorectal cancer), particular molecular classes, and ion intensity. The results suggest that the choices made at the peak selection step have a significant impact in the visual interpretation of the results of either dimensionality reduction or clustering techniques and consequently in any downstream analysis that relies on these. Of particular significance, the results of this work show that while using the most abundant ions can result in interesting structure-related segmentation patterns that correlate well with histological features, using a smaller number of ions specifically selected based on prior knowledge about the biochemistry of the tissues under investigation can result in an easier-to-interpret, potentially more valuable, hypothesis-confirming result. Findings presented will help researchers understand and better utilize unsupervised machine learning approaches to mine high-dimensionality data.

11.
Anal Chem ; 92(16): 11080-11088, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32519547

RESUMO

A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.


Assuntos
Hidrogéis/química , Derivados da Hipromelose/química , Povidona/química , Manejo de Espécimes/métodos , Inclusão do Tecido/métodos , Animais , Masculino , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Chem ; 90(10): 6051-6058, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29668267

RESUMO

Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 °C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.


Assuntos
Ácido Glutâmico/análise , Ácido Láctico/análise , Espectrometria de Massas , Animais , Feminino , Ácido Glutâmico/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Nus , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo
14.
Anal Chem ; 88(22): 10893-10899, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641083

RESUMO

Spatial clustering is a powerful tool in mass spectrometry imaging (MSI) and has been demonstrated to be capable of differentiating tumor types, visualizing intratumor heterogeneity, and segmenting anatomical structures. Several clustering methods have been applied to mass spectrometry imaging data, but a principled comparison and evaluation of different clustering techniques presents a significant challenge. We propose that testing whether the data has a multivariate normal distribution within clusters can be used to evaluate the performance when using algorithms that assume normality in the data, such as k-means clustering. In cases where clustering has been performed using the cosine distance, conversion of the data to polar coordinates prior to normality testing should be performed to ensure normality is tested in the correct coordinate system. In addition to these evaluations of internal consistency, we demonstrate that the multivariate normal distribution can then be used as a basis for statistical modeling of MSI data. This allows the generation of synthetic MSI data sets with known ground truth, providing a means of external clustering evaluation. To demonstrate this, reference data from seven anatomical regions of an MSI image of a coronal section of mouse brain were modeled. From this, a set of synthetic data based on this model was generated. Results of r2 fitting of the chi-squared quantile-quantile plots on the seven anatomical regions confirmed that the data acquired from each spatial region was found to be closer to normally distributed in polar space than in Euclidean. Finally, principal component analysis was applied to a single data set that included synthetic and real data. No significant differences were found between the two data types, indicating the suitability of these methods for generating realistic synthetic data.


Assuntos
Encéfalo/diagnóstico por imagem , Espectrometria de Massas , Animais , Conjuntos de Dados como Assunto , Camundongos
15.
Anal Chem ; 88(9): 4808-16, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27014929

RESUMO

In this study, the impact of sprayer design and geometry on performance in desorption electrospray ionization mass spectrometry (DESI-MS) is assessed, as the sprayer is thought to be a major source of variability. Absolute intensity repeatability, spectral composition, and classification accuracy for biological tissues are considered. Marked differences in tissue analysis performance are seen between the commercially available and a lab-built sprayer. These are thought to be associated with the geometry of the solvent capillary and the resulting shape of the primary electrospray. Experiments with a sprayer with a fixed solvent capillary position show that capillary orientation has a crucial impact on tissue complex lipid signal and can lead to an almost complete loss of signal. Absolute intensity repeatability is compared for five lab-built sprayers using pork liver sections. Repeatability ranges from 1 to 224% for individual sprayers and peaks of different spectral abundance. Between sprayers, repeatability is 16%, 9%, 23%, and 34% for high, medium, low, and very low abundance peaks, respectively. To assess the impact of sprayer variability on tissue classification using multivariate statistical tools, nine human colorectal adenocarcinoma sections are analyzed with three lab-built sprayers, and classification accuracy for adenocarcinoma versus the surrounding stroma is assessed. It ranges from 80.7 to 94.5% between the three sprayers and is 86.5% overall. The presented results confirm that the sprayer setup needs to be closely controlled to obtain reliable data, and a new sprayer setup with a fixed solvent capillary geometry should be developed.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias Colorretais/diagnóstico , Lipídeos/análise , Fígado/química , Imagem Molecular , Espectrometria de Massas por Ionização por Electrospray , Animais , Humanos , Suínos
16.
J Proteomics ; 80: 207-15, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23376328

RESUMO

AIM: To identify a reliable MALDI 'cancer fingerprint' to aid in the rapid detection and characterisation of malignant upper GI-tract disease from endoscopic biopsies. METHODS: A total of 183 tissue biopsies were collected from 126 patients with or without oesophago-gastric malignancy and proteins and lipids separated by methanol/chloroform extraction. Peak intensities in the lipid and protein MALDI spectra from five types of samples (normal oesophageal mucosa from controls, normal oesophageal mucosa from patients with oesophageal adenocarcinoma, nondysplastic Barrett's oesophagus, oesophageal adenocarcinoma, normal gastric mucosa and gastric adenocarcinoma) were compared using non-parametric statistical tests and ROC analyses. RESULTS: Normal oesophageal and gastric tissue generated distinct MALDI spectra characterised by higher levels of calgranulins in oesophageal tissue. MALDI spectra of polypeptides and lipids discriminated between oesophageal adenocarcinoma and Barrett's and normal oesophagus, and between gastric cancer and normal stomach. Many down-regulations were unique to each cancer type whilst some up-regulations, most notably increased HNPs 1-3, were common. CONCLUSIONS: MALDI spectra of small tissue biopsies generated with this straightforward method can be used to rapidly detect numerous cancer-associated biochemical changes. These can be used to identify upper GI-tract cancers regardless of tumour location.


Assuntos
Neoplasias Gastrointestinais/metabolismo , Regulação Neoplásica da Expressão Gênica , Lipídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adenocarcinoma/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Biópsia , Clorofórmio/química , Endoscopia , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Esôfago/patologia , Feminino , Humanos , Masculino , Metanol/química , Pessoa de Meia-Idade , Fenótipo , Curva ROC
17.
Bioconjug Chem ; 22(5): 879-86, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21410265

RESUMO

Colchicine, a known tubulin binding agent and vascular disrupting agent, causes rapid vascular shut down and central necrosis in tumors. The binding of tubulin results in tubulin destabilization, with characteristic cell shape changes and inhibition of cell division, and results in cell death. A gadolinium(III) labeled derivative of colchicine (Gd·DOTA·Colchicinic acid) was synthesized and characterized as a theranostic agent (enabling simultaneous diagnostic/real time MRI contrast imaging). In vitro, Gd·DOTA·Colchicinic acid was shown to initiate cell changes characteristic of tubulin-destabilization in both OVCAR-3 and IGROV-1 ovarian carcinoma cell lines in vitro over a period of 24 h, while maintaining the qualities of the MR imaging tracer. In vivo, Gd·DOTA·Colchicinic acid (200 mg/kg) was shown to induce the formation of central necrosis, which was confirmed ex vivo by histology, in OVCAR-3 subcutaneous tumor xenografts, while simultaneously acting as an imaging agent to promote a significant reduction in the MR relaxation time T(1) (p < 0.05) of tumors 24 h post-administration. Morphological changes within the tumor which corresponded with areas derived from the formation of central necrosis were also present on MR images that were not observed for the same colchicine derivate that was not complexed with gadolinium that also presented with central necrosis ex vivo. However, Gd·DOTA·Colchicinic acid accumulation in the liver, as shown by changes in liver T(1) (p < 0.05), takes place within 2 h. The implication is that Gd·DOTA·Colchicinic acid distributes to tissues, including tumors, within 2 h, but enters tumor cells to lower T(1) times and promotes cell death over a period of up to 24 h. As the biodistribution/pharmacokinetic and pharmacodynamics data provided here is similar to that of conventional colchicines derivatives, such combined data are a potentially powerful way to rapidly characterize the complete behavior of drug candidates in vivo.


Assuntos
Colchicina/síntese química , Imageamento por Ressonância Magnética , Morte Celular/efeitos dos fármacos , Colchicina/farmacologia , Colchicina/uso terapêutico , Relação Dose-Resposta a Droga , Gadolínio/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Conformação Molecular , Estereoisomerismo , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Imaging Biol ; 13(4): 653-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20809208

RESUMO

PURPOSE: This study aims to develop a low molecular weight folate receptor (FR) contrast agent for MR tumor imaging. PROCEDURES: Gadolinium-tetraazacyclododecane tetraacetic acid (Gd.DOTA) was conjugated to folic acid to create Gd.DOTA.Folate. The efficacy of Gd.DOTA.Folate to bind FR was evaluated in vitro by inductively coupled mass spectrometry (ICP-MS) and in vivo by magnetic resonance imaging (MRI) tumor enhancement over 14 h, utilizing an overexpressing α-FR cell line (IGROV-1), compared to an α-FR-negative cell line (OVCAR-3). Gd.DOTA.Folate localization ex vivo was verified by laser ablation ICP-MS. RESULTS: ICP-MS confirmed Gd.DOTA.Folate uptake by IGROV-1 cells and competitive binding with free folic acid inhibited binding. IGROV-1 tumors showed an increase in R (1) at 2 h, which increased significantly over 14 h post-Gd.DOTA.Folate with clear enhancement on MR images. This was not observed in controls. CONCLUSION: These data support the use of FR-targeted small molecular weight MRI contrast agents for tumor imaging in vivo.


Assuntos
Meios de Contraste , Receptores de Folato com Âncoras de GPI/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/metabolismo , Gadolínio/metabolismo , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Humanos , Camundongos , Camundongos Nus , Peso Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Espectrofotometria Atômica , Coloração e Rotulagem
19.
Mol Imaging Biol ; 12(4): 361-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19921340

RESUMO

PURPOSE: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized in postmortem imaging of gadolinium (Gd) spatial distribution in a mouse tumor model postadministration of PEGylated Gd liposomal nanoparticles. PROCEDURES: PEGylated liposomal nanoparticles were formulated using a paramagnetic lipid incorporating Gd, in addition to a fluorescent lipid, and injected intravenously into Balb/C nude mice bearing IGROV-1 tumors. At postinjection (2 h), the tumors and selective organs were imaged by magnetic resonance imaging (MRI) and, after excision, by histology and LA-ICP-MS. RESULTS: The presence of Gd within tumor tissue was confirmed by LA-ICP-MS and when correlated to histology was found to be prevalent in regions of higher vascularity. The presence of Gd in the kidneys was also confirmed. CONCLUSIONS: We have demonstrated, in a novel manner, the use of LA-ICP-MS for the spatial detection of Gd in tumor tissue. LA-ICP-MS is valuable in providing spatio-specific information of MRI contrast agents and more importantly Gd in tumor tissue.


Assuntos
Diagnóstico por Imagem/métodos , Gadolínio/farmacocinética , Terapia a Laser/métodos , Neoplasias/metabolismo , Espectrofotometria Atômica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Rim/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Neoplasias/patologia
20.
Proteomics ; 8(18): 3775-84, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18712769

RESUMO

Laser ablation (LA) ICP-MS has been developed as a new tool for imaging of cancer biomarkers in tissue sections. The distribution of two breast cancer-associated proteins, MUC-1 and HER2 was studied based on multiple line rastering of tissue sections and measurement of relevant Au/Ag tagged antibodies bound to the tissue. Comparisons with optical microscopy indicated extremely high sensitivity for the LA technique and sufficiently good resolution to permit fine scale feature mapping at the cellular level. Application to the quantitative assessment of HER2 expression in tissue microarrays was demonstrated.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Mucina-1/metabolismo , Receptor ErbB-2/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Imuno-Histoquímica/métodos , Terapia a Laser/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA