Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(7): 1022-1033, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751871

RESUMO

Pyridoxal-5'-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its donors to acceptors. Our goal is to validate the hypothesis by finding common motif(s) in the multitude of PLP-dependent enzymes for binding the limited number of PLP donors, namely pyridoxal kinase (PdxK), pyridox(am)in-5'-phosphate oxidase (PNPO), and PLP-binding protein (PLPBP). Experimentally confirmed interactions between the PLP donors and acceptors reveal that PdxK and PNPO interact with the most abundant PLP acceptors belonging to structural folds I and II, while PLPBP - with those belonging to folds III and V. Aligning sequences and 3D structures of the identified interactors of PdxK and PNPO, we have identified a common motif in the PLP-dependent enzymes of folds I and II. The motif extends from the enzyme surface to the neighborhood of the PLP binding site, represented by an exposed alfa-helix, a partially buried beta-strand, and residual loops. Pathogenicity of mutations in the human PLP-dependent enzymes within or in the vicinity of the motif, but outside of the active sites, supports functional significance of the motif that may provide an interface for the direct transfer of PLP from the sites of its synthesis to those of coenzyme binding. The enzyme-specific amino acid residues of the common motif may be useful to develop selective inhibitors blocking PLP delivery to the PLP-dependent enzymes critical for proliferation of malignant cells.


Assuntos
Aminoácidos , Coenzimas , Humanos , Sítios de Ligação , Fosfatos , Piridoxal
2.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569781

RESUMO

Epilepsy is characterized by recurrent seizures due to a perturbed balance between glutamate and GABA neurotransmission. Our goal is to reveal the molecular mechanisms of the changes upon repeated challenges of this balance, suggesting knowledge-based neuroprotection. To address this goal, a set of metabolic indicators in the post-seizure rat brain cortex is compared before and after pharmacological kindling with pentylenetetrazole (PTZ). Vitamins B1 and B6 supporting energy and neurotransmitter metabolism are studied as neuroprotectors. PTZ kindling increases the seizure severity (1.3 fold, p < 0.01), elevating post-seizure rearings (1.5 fold, p = 0.03) and steps out of the walls (2 fold, p = 0.01). In the kindled vs. non-kindled rats, the post-seizure p53 level is increased 1.3 fold (p = 0.03), reciprocating a 1.4-fold (p = 0.02) decrease in the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) controlling the glutamate degradation. Further, decreased expression of deacylases SIRT3 (1.4 fold, p = 0.01) and SIRT5 (1.5 fold, p = 0.01) reciprocates increased acetylation of 15 kDa proteins 1.5 fold (p < 0.01). Finally, the kindling abrogates the stress response to multiple saline injections in the control animals, manifested in the increased activities of the pyruvate dehydrogenase complex, malic enzyme, glutamine synthetase and decreased malate dehydrogenase activity. Post-seizure animals demonstrate correlations of p53 expression to the levels of glutamate (r = 0.79, p = 0.05). The correlations of the seizure severity and duration to the levels of GABA (r = 0.59, p = 0.05) and glutamate dehydrogenase activity (r = 0.58, p = 0.02), respectively, are substituted by the correlation of the seizure latency with the OGDHC activity (r = 0.69, p < 0.01) after the vitamins administration, testifying to the vitamins-dependent impact of the kindling on glutamate/GABA metabolism. The vitamins also abrogate the correlations of behavioral parameters with seizure duration (r 0.53-0.59, p < 0.03). Thus, increased seizures and modified post-seizure behavior in rats after PTZ kindling are associated with multiple changes in the vitamin-dependent brain metabolism of amino acids, linked to key metabolic regulators: p53, OGDHC, SIRT3 and SIRT5.


Assuntos
Pentilenotetrazol , Sirtuína 3 , Ratos , Animais , Pentilenotetrazol/farmacologia , Vitaminas , Sirtuína 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Convulsões/induzido quimicamente , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Front Med (Lausanne) ; 9: 1035356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405587

RESUMO

Amino acid deprivation therapy (AADT) is a promising strategy for developing novel anticancer treatments, based on variations in metabolism of healthy and malignant cells. L-asparaginase was the first amino acid-degrading enzyme that received FDA approval for the treatment of acute lymphoblastic leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials for the treatment of metastatic melanomas and hepatocellular carcinomas. Essential dependence of certain cancer cells on methionine explains the anticancer efficacy of methionine-g-lyase. Along with significant progress in identification of metabolic vulnerabilities of cancer cells, new amino acid-cleaving enzymes appear as promising agents for cancer treatment: lysine oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-lyase. However, sensitivity of specific cancer cell types to these enzymes differs. Hence, search for prognostic and predictive markers for AADT and introduction of the markers into clinical practice are of great importance for translational medicine. As specific metabolic pathways in cancer cells are determined by the enzyme expression, some of these enzymes may define the sensitivity to AADT. This review considers the known predictors for efficiency of AADT, emphasizing the importance of knowledge on cancer-specific amino acid significance for such predictions.

4.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232607

RESUMO

Glutamate dehydrogenase (GDH) plays a key role in the metabolism of glutamate, an important compound at a cross-road of carbon and nitrogen metabolism and a relevant neurotransmitter. Despite being one of the first discovered allosteric enzymes, GDH still poses challenges for structural characterization of its allosteric sites. Only the structures with ADP, and at low (3.5 Å) resolution, are available for mammalian GDH complexes with allosteric activators. Here, we aim at deciphering a structural basis for the GDH allosteric activation using bovine GDH as a model. For the first time, we report a mammalian GDH structure in a ternary complex with the activators leucine and ADP, co-crystallized with potassium ion, resolved to 2.45 Å. An improved 2.4-angstrom resolution of the GDH complex with ADP is also presented. The ternary complex with leucine and ADP differs from the binary complex with ADP by the conformation of GDH C-terminus, involved in the leucine binding and subunit interactions. The potassium site, identified in this work, may mediate interactions between the leucine and ADP binding sites. Our data provide novel insights into the mechanisms of GDH activation by leucine and ADP, linked to the enzyme regulation by (de)acetylation.


Assuntos
Glutamato Desidrogenase , Ácido Glutâmico , Difosfato de Adenosina/metabolismo , Regulação Alostérica , Animais , Carbono , Bovinos , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Leucina/metabolismo , Mamíferos/metabolismo , Nitrogênio , Potássio
5.
Front Genet ; 12: 658446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868388

RESUMO

Thiamine (vitamin B1) is often deficient in oncopatients, particularly those undergoing chemotherapy. However, interaction between the thiamine deficiency and anticancer action of drugs has not been characterized. A major natural thiamine derivative, thiamine diphosphate (ThDP), is a coenzyme of central metabolism, also known to affect transcriptional activity of the master metabolic regulator and genome guardian p53. A direct transcriptional target of p53, p21, regulates cell cycle dynamics and DNA damage response. Our work focuses on dependence of the action of the DNA damaging anticancer drug cisplatin on metabolic regulation through p53/p21 axes and cellular thiamine status in human lung adenocarcinoma cells A549. These cells are used as a model of a hardly curable cancer, known to develop chemoresistance to platinum drugs, such as cisplatin. Compared to wild type (A549WT), a stable line with a 60% knockdown of p21 (A549p21-) is less sensitive to antiproliferative action of cisplatin. In contrast, in the thiamine-deficient medium, cisplatin impairs the viability of A549p21- cells more than that of A549WT cells. Analysis of the associated metabolic changes in the cells indicates that (i) p21 knockdown restricts the production of 2-oxoglutarate via glutamate oxidation, stimulating that within the tricarboxylic acid (TCA) cycle; (ii) cellular cisplatin sensitivity is associated with a 4-fold upregulation of glutamic-oxaloacetic transaminase (GOT2) by cisplatin; (iii) cellular cisplatin resistance is associated with a 2-fold upregulation of p53 by cisplatin. Correlation analysis of the p53 expression and enzymatic activities upon variations in cellular thiamine/ThDP levels indicates that p21 knockdown substitutes positive correlation of the p53 expression with the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) for that with the activity of glutamate dehydrogenase (GDH). The knockdown also changes correlations of the levels of OGDHC, GDH and GOT2 with those of the malate and isocitrate dehydrogenases. Thus, a p53/p21-dependent change in partitioning of the glutamate conversion to 2-oxoglutarate through GOT2 or GDH, linked to NAD(P)-dependent metabolism of 2-oxoglutarate in affiliated pathways, adapts A549 cells to thiamine deficiency or cisplatin treatment. Cellular thiamine deficiency may interfere with antiproliferative action of cisplatin due to their common modulation of the p53/p21-dependent metabolic switch between the glutamate oxidation and transamination.

6.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466567

RESUMO

Genetic up-regulation of mitochondrial 2-oxoglutarate dehydrogenase is known to increase reactive oxygen species, being detrimental for cancer cells. Thiamine diphosphate (ThDP, cocarboxylase) is an essential activator of the enzyme and inhibits p53-DNA binding in cancer cells. We hypothesize that the pleiotropic regulator ThDP may be of importance for anticancer therapies. The hypothesis is tested in the present work on lung adenocarcinoma cells A549 possessing the p53-p21 pathway as fully functional or perturbed by p21 knockdown. Molecular mechanisms of ThDP action on cellular viability and their interplay with the cisplatin and p53-p21 pathways are characterized. Despite the well-known antioxidant properties of thiamine, A549 cells exhibit decreases in their reducing power and glutathione level after incubation with 5 mM ThDP, not observed in non-cancer epithelial cells Vero. Moreover, thiamine deficiency elevates glutathione in A549 cells. Viability of the thiamine deficient A549 cells is increased at a low (0.05 mM) ThDP. However, the increase is attenuated by 5 mM ThDP, p21 knockdown, specific inhibitor of the 2-oxoglutarate dehydrogenase complex (OGDHC), or cisplatin. Cellular levels of the catalytically competent ThDP·OGDHC holoenzyme are dysregulated by p21 knockdown and correlate negatively with the A549 viability. The inverse relationship between cellular glutathione and holo-OGDHC is corroborated by their comparison in the A549 and Vero cells. The similarity, non-additivity, and p21 dependence of the dual actions of ThDP and cisplatin on A549 cells manifest a common OGDHC-mediated mechanism of the viability decrease. High ThDP saturation of OGDHC compromises the redox state of A549 cells under the control of p53-p21 axes.


Assuntos
Adenocarcinoma/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Neoplasias Pulmonares/metabolismo , Tiamina Pirofosfato/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cisplatino/farmacologia , Glutationa/metabolismo , Humanos , Oxirredução , Tiamina/metabolismo , Células Vero
7.
Sci Rep ; 10(1): 1886, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024885

RESUMO

The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid ß-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of ß-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , Lisina/análogos & derivados , Niacina/metabolismo , Adipatos/química , Adipatos/metabolismo , Animais , Ensaios Enzimáticos , Humanos , Lisina/química , Lisina/metabolismo , Células MCF-7 , Masculino , Niacina/química , Oxirredução , Fosforilação , RNA-Seq , Ratos
8.
Front Chem ; 8: 596187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511099

RESUMO

Phosphonate analogs of pyruvate and 2-oxoglutarate are established specific inhibitors of cognate 2-oxo acid dehydrogenases. The present work develops application of this class of compounds to specific in vivo inhibition of 2-oxoglutarate dehydrogenase (OGDH) and its isoenzyme, 2-oxoadipate dehydrogenase (OADH). The isoenzymes-enriched preparations from the rat tissues with different expression of OADH and OGDH are used to characterize their interaction with 2-oxoglutarate (OG), 2-oxoadipate (OA) and the phosphonate analogs. Despite a 100-fold difference in the isoenzymes ratio in the heart and liver, similar Michaelis saturations by OG are inherent in the enzyme preparations from these tissues ( K m O G = 0.45 ± 0.06 and 0.27 ± 0.026 mM, respectively), indicating no significant contribution of OADH to the OGDH reaction, or similar affinities of the isoenzymes to OG. However, the preparations differ in the catalysis of OADH reaction. The heart preparation, where OADH/OGDH ratio is ≈ 0.01, possesses low-affinity sites to OA ( K m O A = 0.55 ± 0.07 mM). The liver preparation, where OADH/OGDH ratio is ≈ 1.6, demonstrates a biphasic saturation with OA: the low-affinity sites ( K m , 2 O A = 0.45 ± 0.12 mM) are similar to those of the heart preparation; the high-affinity sites ( K m , 1 O A = 0.008 ± 0.001 mM), revealed in the liver preparation only, are attributed to OADH. Phosphonate analogs of C5-C7 dicarboxylic 2-oxo acids inhibit OGDH and OADH competitively to 2-oxo substrates in all sites. The high-affinity sites for OA are affected the least by the C5 analog (succinyl phosphonate) and the most by the C7 one (adipoyl phosphonate). The opposite reactivity is inherent in both the low-affinity OA-binding sites and OG-binding sites. The C6 analog (glutaryl phosphonate) does not exhibit a significant preference to either OADH or OGDH. Structural analysis of the phosphonates binding to OADH and OGDH reveals the substitution of a tyrosine residue in OGDH for a serine residue in OADH among structural determinants of the preferential binding of the bulkier ligands to OADH. The consistent kinetic and structural results expose adipoyl phosphonate as a valuable pharmacological tool for specific in vivo inhibition of the DHTKD1-encoded OADH, a new member of mammalian family of 2-oxo acid dehydrogenases, up-regulated in some cancers and associated with diabetes and obesity.

9.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
10.
Oncotarget ; 7(18): 26400-21, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27027236

RESUMO

2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.


Assuntos
Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Neoplasias/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Organofosfonatos/farmacologia , Succinatos/farmacologia
11.
Oncotarget ; 6(37): 40036-52, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26503465

RESUMO

The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 µM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 µM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition.


Assuntos
Metaboloma/efeitos dos fármacos , Ácidos Fosfínicos/farmacologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Piruvatos/farmacologia , Alameticina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Cinética , Metaboloma/genética , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Piruvatos/química , Piruvatos/metabolismo , Ratos Wistar
12.
Cells ; 4(3): 427-51, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26308058

RESUMO

Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

13.
Nat Immunol ; 16(4): 415-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706746

RESUMO

Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for the proliferation and differentiation of B cells.


Assuntos
Linfócitos B/imunologia , Proteínas ELAV/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Imunoglobulinas/biossíntese , RNA Mensageiro/imunologia , Aciltransferases/genética , Aciltransferases/imunologia , Processamento Alternativo/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Morte Celular , Diferenciação Celular , Proliferação de Células , Proteínas ELAV/genética , Eritrócitos/imunologia , Centro Germinativo/citologia , Centro Germinativo/efeitos dos fármacos , Imunização , Switching de Imunoglobulina , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/imunologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Ovinos
14.
FEBS J ; 280(24): 6412-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24004353

RESUMO

Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.


Assuntos
Modelos Animais de Doenças , Desenho de Fármacos , Enzimas/metabolismo , Metabolismo/fisiologia , Tiamina Pirofosfato/metabolismo , Animais , Enzimas/química , Humanos , Tiamina Pirofosfato/química
16.
Proteins ; 71(2): 874-90, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18004749

RESUMO

Structural relationship within the family of the thiamine diphosphate-dependent 2-oxo acid dehydrogenases was analyzed by combining different methods of sequence alignment with crystallographic and enzymological studies of the family members. For the first time, the sequence similarity of the homodimeric 2-oxoglutarate dehydrogenase to heterotetrameric 2-oxo acid dehydrogenases is established. The presented alignment of the catalytic domains of the dehydrogenases of pyruvate, branched-chain 2-oxo acids and 2-oxoglutarate unravels the sequence markers of the substrate specificity and the essential residues of the family members without the 3D structures resolved. Predicted dual substrate specificity of some of the 2-oxo acid dehydrogenases was confirmed experimentally. The results were used to decipher functions of the two hypothetical proteins of animal genomes, OGDHL and DHTKD1, similar to the 2-oxoglutarate dehydrogenase. Conservation of all the essential residues confirmed their catalytic competence. Sequence analysis indicated that OGDHL represents a previously unknown isoform of the 2-oxoglutarate dehydrogenase, whereas DHTKD1 differs from the homologs at the N-terminus and substrate binding pocket. The differences suggest changes in heterologous protein interactions and accommodation of more polar and/or bulkier structural analogs of 2-oxoglutarate, such as 2-oxoadipate, 2-oxo-4-hydroxyglutarate, or products of the carboligase reaction between a 2-oxodicarboxylate and glyoxylate or acetaldehyde. The signatures of the Ca2+-binding sites were found in the Ca2+-activated 2-oxoglutarate dehydrogenase and OGDHL, but not in DHTKD1. Mitochondrial localization was predicted for OGDHL and DHTKD1, with DHTKD1 probably localized also to nuclei. Medical implications of the obtained results are discussed in view of the possible associations of the 2-oxo acid dehydrogenases and DHTKD1 with neurodegeneration and cancer.


Assuntos
Complexo Cetoglutarato Desidrogenase/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Núcleo Celular/enzimologia , Humanos , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Piruvato Desidrogenase (Lipoamida)/química , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Tiamina Pirofosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA