Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36612300

RESUMO

Background: The usefulness of 5-ALA-mediated fluorescence-guided resection (FGR) in meningiomas is controversial, and information on the molecular background of fluorescence is sparse. Methods: Specimens obtained during 44 FGRs of intracranial meningiomas were analyzed for the presence of tumor tissue and fluorescence. Protein/mRNA expression of key transmembrane transporters/enzymes involved in PpIX metabolism (ABCB6, ABCG2, FECH, CPOX) were investigated using immunohistochemistry/qPCR. Results: Intraoperative fluorescence was observed in 70 of 111 specimens (63%). No correlation was found between fluorescence and the WHO grade (p = 0.403). FGR enabled the identification of neoplastic tissue (sensitivity 84%, specificity 67%, positive and negative predictive value of 86% and 63%, respectively, AUC: 0.75, p < 0.001), and was improved in subgroup analyses excluding dura specimens (86%, 88%, 96%, 63% and 0.87, respectively; p < 0.001). No correlation was found between cortical fluorescence and tumor invasion (p = 0.351). Protein expression of ABCB6, ABCG2, FECH and CPOX was found in meningioma tissue and was correlated with fluorescence (p < 0.05, each), whereas this was not confirmed for mRNA expression. Aberrant expression was observed in the CNS. Conclusion: FGR enables the intraoperative identification of meningioma tissue with limitations concerning dura invasion and due to ectopic expression in the CNS. ABCB6, ABCG2, FECH and CPOX are expressed in meningioma tissue and are related to fluorescence.

2.
J Basic Clin Physiol Pharmacol ; 32(2): 57-66, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33155994

RESUMO

OBJECTIVES: Neurogenesis occurs in the mammalian brain throughout adulthood and increases in response to metabolic, toxic or traumatic insults. To remove potentially superfluous or unwanted neural stem cells/neuronal progenitors, their rate of proliferation and differentiation is fine-tuned against their rate of apoptosis. Apoptosis requires the transcriptional and posttranslational activation of Bcl-2-homolgy domain 3 (BH3)-only proteins. Previously, we demonstrated that the BH3-only protein p53-upregulated mediator of apoptosis (Puma) controls the physiological rate of apoptosis of neural precursor cells in the adult mouse hippocampus. Puma's role in controlling a lesion-induced increase in neural stem cells is currently not known. METHODS: We employed a model of local, N-methyl-D-asparte (NMDA)-induced excitotoxic injury to the CA1 hippocampal subfield and immunofluorescence labelling to produce increased neural stem cell proliferation/ neurogenesis in the dentate gyrus at two survival times following the excitotoxic lesion. RESULTS: Deletion of puma failed to rescue any NMDA-induced increase in adult born cells as assessed by BrdU or Doublecortin labelling in the long-term. No difference in the proportion of BrdU/NeuN-positive cells comparing the different genotypes and treatments suggested that the phenotypic fate of the cells was preserved regardless of the genotype and the treatment. CONCLUSIONS: While neurogenesis is up-regulated in puma-deficient animals following NMDA-induced excitotoxicity to the hippocampal CA1 subfield, puma deficiency could not protect this surplus of newly generated cells from apoptotic cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Região CA1 Hipocampal/citologia , Células-Tronco Neurais , Neurogênese , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Bromodesoxiuridina , Camundongos , N-Metilaspartato/efeitos adversos , Células-Tronco Neurais/citologia
3.
Stem Cells ; 34(8): 2115-29, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27068685

RESUMO

Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thus, our work uncovers a novel function of Prox1 as a fate determinant for oligodendrocytes in the adult mammalian brain. These data indicate that the neurogenic and oligodendrogliogenic lineages in the two adult neurogenic niches exhibit a distinct requirement for Prox1, being important for neurogenesis in the DG but being indispensable for oligodendrogliogenesis in the SVZ. Stem Cells 2016;34:2115-2129.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Movimento Celular/genética , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Neurogênese/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo
4.
Stem Cell Res Ther ; 3(4): 33, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22892385

RESUMO

INTRODUCTION: The adult mammalian brain retains niches for neural stem cells (NSCs), which can generate glial and neuronal components of the brain tissue. However, it is barely established how chronic neuroinflammation, as it occurs in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, affects adult neurogenesis and, therefore, modulates the brain's potential for self-regeneration. METHODS: Neural stem cell culture techniques, intraventricular tumor necrosis factor (TNF)-α infusion and the 6-hydroxydopamine mouse model were used to investigate the influence of neuroinflammation on adult neurogenesis in the Parkinson's disease background. Microscopic methods and behavioral tests were used to analyze samples. RESULTS: Here, we demonstrate that differences in the chronicity of TNF-α application to cultured NSCs result in opposed effects on their proliferation. However, chronic TNF-α treatment, mimicking Parkinson's disease associated neuroinflammation, shows detrimental effects on neural progenitor cell activity. Inversely, pharmacological inhibition of neuroinflammation in a 6-hydroxydopamine mouse model led to increased neural progenitor cell proliferation in the subventricular zone and neuroblast migration into the lesioned striatum. Four months after surgery, we measured improved Parkinson's disease-associated behavior, which was correlated with long-term anti-inflammatory treatment. But surprisingly, instead of newly generated striatal neurons, oligodendrogenesis in the striatum of treated mice was enhanced. CONCLUSIONS: We conclude that anti-inflammatory treatment, in a 6-hydroxydopamine mouse model for Parkinson's disease, leads to activation of adult neural stem cells. These adult neural stem cells generate striatal oligodendrocytes. The higher numbers of newborn oligodendrocytes possibly contribute to axonal stability and function in this mouse model of Parkinson's disease and thereby attenuate dysfunctions of basalganglian motor-control.


Assuntos
Anti-Inflamatórios/farmacologia , Neurogênese/efeitos dos fármacos , Doença de Parkinson/etiologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Minociclina/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/citologia , Oxidopamina/toxicidade , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA