Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomaterials ; 283: 121416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217483

RESUMO

Personalised nanomedicine is an advancing field which has developed significant improvements for targeting therapeutics to aggressive cancer and with fewer side effects. The treatment of gliomas such as glioblastoma (or other brain tumours), with nanomedicine is complicated by a commonly poor accumulation of drugs in tumour tissue owing to the partially intact blood-brain barrier (BBB). Nonetheless, the BBB becomes compromised following surgical intervention, and gradually with disease progression. Increased vasculature permeability generated by a tumour, combined with decreased BBB integrity, offers a mechanism to enhance therapeutic outcomes. We monitored a spontaneous glioma tumour model in immunocompetent mice with ongoing T2-weighted and contrast-enhanced T1-weighted magnetic resonance imaging gradient echo and spin echo sequences to predict an optimal "leakiness" stage for nanomedicine injections. To ascertain the effectiveness of targeted nanomedicines in treating brain tumours, subsequent systemic administration of targeted hyperbranched polymers was then utislised, to deliver the therapeutic payload when both the tumour and brain vascularity had become sufficiently susceptible to allow drug accumulation. Treatment with either doxorubicin-loaded hyperbranched polymer, or the same nanomedicine targeted to an ephrin receptor (EphA2) using a bispecific antibody, resulted in uptake of chemotherapeutic doxorubicin in the tumour and in reduced tumour growth. Compared to vehicle and doxorubicin only, nanoparticle delivered doxorubicin resulted in increased tumour apoptosis, while averting cardiotoxicity. This suggests that polyethylene based (PEGylated)-nanoparticle delivered doxorubicin could provide a more efficient treatment in tumours with a disrupted BBB, and that treatment should commence immediately following detection of gadolinium permeability, with early detection and ongoing 'leakiness' monitoring in susceptible patients being a key factor.


Assuntos
Neoplasias Encefálicas , Nanomedicina , Animais , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Nanomedicina/métodos
2.
Acta Neuropathol ; 143(4): 427-451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35169893

RESUMO

Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.


Assuntos
Neoplasias do Sistema Nervoso Central , Fusão Oncogênica , Adulto , Carcinogênese , Neoplasias do Sistema Nervoso Central/genética , Criança , Humanos , Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/genética
3.
Carcinogenesis ; 42(3): 357-368, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33346791

RESUMO

Nuclear factor one (NFI) transcription factors are implicated in both brain development and cancer in mice and humans and play an essential role in glial differentiation. NFI expression is reduced in human astrocytoma samples, particularly those of higher grade, whereas over-expression of NFI protein can induce the differentiation of glioblastoma cells within human tumour xenografts and in glioblastoma cell lines in vitro. These data indicate that NFI proteins may act as tumour suppressors in glioma. To test this hypothesis, we generated complex mouse genetic crosses involving six alleles to target gene deletion of known tumour suppressor genes that induce endogenous high-grade glioma in mice, and overlaid this with loss of function Nfi mutant alleles, Nfia and Nfib, a reporter transgene and an inducible Cre allele. Deletion of Nfi resulted in reduced survival time of the mice, increased tumour load and a more aggressive tumour phenotype than observed in glioma mice with normal expression of NFI. Together, these data indicate that NFI genes represent a credible target for both diagnostic analyses and therapeutic strategies to combat high-grade glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Fatores de Transcrição NFI/metabolismo , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/genética
4.
ACS Cent Sci ; 6(5): 727-738, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32490189

RESUMO

Increasing accumulation and retention of nanomedicines within tumor tissue is a significant challenge, particularly in the case of brain tumors where access to the tumor through the vasculature is restricted by the blood-brain barrier (BBB). This makes the application of nanomedicines in neuro-oncology often considered unfeasible, with efficacy limited to regions of significant disease progression and compromised BBB. However, little is understood about how the evolving tumor-brain physiology during disease progression affects the permeability and retention of designer nanomedicines. We report here the development of a modular nanomedicine platform that, when used in conjunction with a unique model of how tumorigenesis affects BBB integrity, allows investigation of how nanomaterial properties affect uptake and retention in brain tissue. By combining different in vivo longitudinal imaging techniques (including positron emission tomography and magnetic resonance imaging), we have evaluated the retention of nanomedicines with predefined physicochemical properties (size and surface functionality) and established a relationship between structure and tissue accumulation as a function of a new parameter that measures BBB leakiness; this offers significant advancements in our ability to relate tumor accumulation of nanomedicines to more physiologically relevant parameters. Our data show that accumulation of nanomedicines in brain tumor tissue is better correlated with the leakiness of the BBB than actual tumor volume. This was evaluated by establishing brain tumors using a spontaneous and endogenously derived glioblastoma model providing a unique opportunity to assess these parameters individually and compare the results across multiple mice. We also quantitatively demonstrate that smaller nanomedicines (20 nm) can indeed cross the BBB and accumulate in tumors at earlier stages of the disease than larger analogues, therefore opening the possibility of developing patient-specific nanoparticle treatment interventions in earlier stages of the disease. Importantly, these results provide a more predictive approach for designing efficacious personalized nanomedicines based on a particular patient's condition.

5.
Neuron ; 106(3): 404-420.e8, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135084

RESUMO

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.


Assuntos
Córtex Cerebral/metabolismo , RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/patologia , RNA/metabolismo
6.
J Neurooncol ; 146(1): 41-53, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760595

RESUMO

INTRODUCTION: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma. METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation. RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts. CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Glioblastoma/patologia , Fatores de Transcrição NFI/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Transcrição NFI/genética , Gradação de Tumores , Neurogênese , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Med Genet C Semin Med Genet ; 181(4): 611-626, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31730271

RESUMO

The nuclear factor one (NFI) site-specific DNA-binding proteins represent a family of transcription factors that are important for the development of multiple organ systems, including the brain. During brain development in mice, the expression patterns of Nfia, Nfib, and Nfix overlap, and knockout mice for each of these exhibit overlapping brain defects, including megalencephaly, dysgenesis of the corpus callosum, and enlarged ventricles, which implies a common but not redundant function in brain development. In line with these models, human phenotypes caused by haploinsufficiency of NFIA, NFIB, and NFIX display significant overlap, sharing neurodevelopmental deficits, macrocephaly, brain anomalies, and variable somatic overgrowth. Other anomalies may be present depending on the NFI gene involved. The possibility of variants in NFI genes should therefore be considered in individuals with intellectual disability and brain overgrowth, with individual NFI-related conditions being differentiated from one another by additional signs and symptoms. The exception is provided by specific NFIX variants that act in a dominant negative manner, as these cause a recognizable entity with more severe cognitive impairment and marked bone dysplasia, Marshall-Smith syndrome. NFIX duplications are associated with a phenotype opposite to that of haploinsufficiency, characterized by short stature, small head circumference, and delayed bone age. The spectrum of NFI-related disorders will likely be further expanded, as larger cohorts are assessed.


Assuntos
Crescimento/genética , Mutação , Fatores de Transcrição NFI/genética , Anormalidades Múltiplas/genética , Animais , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Duplicação Gênica , Transtornos do Crescimento/genética , Humanos , Camundongos , Displasia Septo-Óptica/genética , Síndrome
8.
Nat Commun ; 10(1): 3914, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477715

RESUMO

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ependimoma/metabolismo , Fatores de Transcrição NFI/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/genética , Ependimoma/genética , Ependimoma/patologia , Células HEK293 , Humanos , Camundongos , Fatores de Transcrição NFI/genética , Células NIH 3T3 , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
9.
Cancer Lett ; 410: 124-138, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962832

RESUMO

The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer. Our review includes all cancer types in which the NFI genes are implicated, focusing predominantly on studies demonstrating their oncogenic or tumour-suppressive potential. We conclude by presenting the challenges impeding our understanding of NFI function in cancer biology, and demonstrate how a developmental perspective may contribute towards overcoming such hurdles.


Assuntos
Fatores de Transcrição NFI/metabolismo , Neoplasias/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição NFI/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Transcrição Gênica
10.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
11.
Oncotarget ; 7(20): 29306-20, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27083054

RESUMO

Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Fatores de Transcrição NFI/metabolismo , Animais , Linhagem Celular Tumoral , Genes Supressores de Tumor/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Supressoras de Tumor/metabolismo
12.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24847876

RESUMO

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Meduloblastoma/genética , Análise de Sequência de DNA/métodos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Feminino , Genoma/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patologia , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Acta Neuropathol ; 125(3): 385-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23179372

RESUMO

Recent studies showed frequent mutations in histone H3 lysine 27 (H3K27) demethylases in medulloblastomas of Group 3 and Group 4, suggesting a role for H3K27 methylation in these tumors. Indeed, trimethylated H3K27 (H3K27me3) levels were shown to be higher in Group 3 and 4 tumors compared to WNT and SHH medulloblastomas, also in tumors without detectable mutations in demethylases. Here, we report that polycomb genes, required for H3K27 methylation, are consistently upregulated in Group 3 and 4 tumors. These tumors show high expression of the homeobox transcription factor OTX2. Silencing of OTX2 in D425 medulloblastoma cells resulted in downregulation of polycomb genes such as EZH2, EED, SUZ12 and RBBP4 and upregulation of H3K27 demethylases KDM6A, KDM6B, JARID2 and KDM7A. This was accompanied by decreased H3K27me3 and increased H3K27me1 levels in promoter regions. Strikingly, the decrease of H3K27me3 was most prominent in promoters that bind OTX2. OTX2-bound promoters showed high levels of the H3K4me3 and H3K9ac activation marks and intermediate levels of the H3K27me3 inactivation mark, reminiscent of a bivalent modification. After silencing of OTX2, H3K27me3 levels strongly dropped, but H3K4me3 and H3K9ac levels remained high. OTX2-bound bivalent genes showed high expression levels in D425, but the expression of most of these genes did not change after OTX2 silencing and loss of the H3K27me3 mark. Maintaining promoters in a bivalent state by sustaining H3K27 trimethylation therefore seems to be an important function of OTX2 in medulloblastoma, while other transcription factors might regulate the actual expression levels of these genes.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Histonas/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Histonas/genética , Humanos , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro
14.
Genes Chromosomes Cancer ; 52(1): 11-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965931

RESUMO

Uterine leiomyomas are benign solid tumors of mesenchymal origin which occur with an estimated incidence of up to 77% of all women of reproductive age. The majority of these tumors remains symptomless, but in about a quarter of cases they cause leiomyoma-associated symptoms including chronic pelvic pain, menorrhagia-induced anemia, and impaired fertility. As a consequence, they are the most common indication for pre-menopausal hysterectomy in the USA and Japan and annually translate into a multibillion dollar healthcare problem. Approximately 40% of these neoplasms present with recurring structural cytogenetic anomalies, including del(7)(q22), t(12;14)(q15;q24), t(1;2)(p36;p24), and anomalies affecting 6p21 and/or 10q22. Using positional cloning strategies, we and others previously identified HMGA1, HMGA2, RAD51L1, MORF, and, more recently, NCOA1 as primary target (fusion) genes associated with tumor initiation in four of these distinct cytogenetic subgroups. Despite the fact that the del(7)(q22) subgroup is the largest among leiomyomas, and was first described more than twenty years ago, the 7q22 leiomyoma target gene still awaits unequivocal identification. We here describe a positional cloning effort from two independent uterine leiomyomas, containing respectively a pericentric and a paracentric chromosomal inversion, both affecting band 7q22. We found that both chromosomal inversions target the cut-like homeobox 1 (CUX1) gene on chromosomal band 7q22.1 in a way which is functionally equivalent to the more frequently observed del(7q) cases, and which is compatible with a mono-allelic knock-out scenario, similar as was previously described for the cytogenetic subgroup showing chromosome 14q involvement.


Assuntos
Biomarcadores Tumorais/genética , Cromossomos Humanos Par 7 , Proteínas de Homeodomínio/genética , Leiomioma/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Neoplasias Uterinas/genética , Sequência de Aminoácidos , Sequência de Bases , Feminino , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fatores de Transcrição
15.
Int J Cancer ; 131(2): E21-32, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21964830

RESUMO

The transcription factor OTX2 has been implicated as an oncogene in medulloblastoma, which is the most common malignant brain tumor in children. It is highly expressed in most medulloblastomas and amplified in a subset of them. To study the role OTX2 has in medulloblastoma we investigated the downstream pathway of OTX2. We generated D425 medulloblastoma cells in which endogenous OTX2 can be silenced by inducible shRNA. Silencing of OTX2 strongly inhibited cell proliferation and resulted in a neuronal-like differentiation. Expression profiling of time courses after silencing showed a progressive change in gene expression for many cellular processes. Downregulated genes were highly enriched for cell cycle and visual perception genes, while upregulated genes were enriched for genes involved in development and differentiation. This shift is reminiscent of expression changes described during normal cerebellum development where proliferating granule progenitor cells have high OTX2 expression, which diminishes when these cells exit the cell cycle and start to differentiate. ChIP-on-chip analyses of OTX2 in D425 cells identified cell cycle and perception genes as direct OTX2 targets, while regulation of most differentiation genes appeared to be indirect. The expression of many directly regulated genes correlated to OTX2 expression in primary tumors, suggesting the in vivo relevance of these genes and their potential as targets for therapeutic intervention. These analyses provide more insight in the molecular network of OTX2, demonstrating that OTX2 is essential in medulloblastoma and directly drives proliferation by regulation of cell cycle genes.


Assuntos
Meduloblastoma/genética , Meduloblastoma/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Cerebelo/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Meduloblastoma/patologia , Interferência de RNA , RNA Interferente Pequeno , Percepção Visual/genética
16.
PLoS One ; 6(10): e26058, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016811

RESUMO

Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around -250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma.


Assuntos
Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/patologia , Fatores de Transcrição Otx/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , DNA/genética , DNA/metabolismo , Humanos , Meduloblastoma/genética , Motivos de Nucleotídeos/genética , Ligação Proteica , Células-Tronco/metabolismo , Especificidade por Substrato , Sítio de Iniciação de Transcrição
17.
Mol Cancer Res ; 8(10): 1344-57, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21047732

RESUMO

The transcription factor orthodenticle homeobox 2 (OTX2) has been implicated in the pathogenesis of medulloblastoma, as it is often highly expressed and sometimes amplified in these tumors. Little is known of the downstream pathways regulated by OTX2. We therefore generated MED8A and DAOY medulloblastoma cell lines with doxycycline-inducible OTX2 expression. In both cell lines, OTX2 inhibited proliferation and induced a senescence-like phenotype with senescence-associated ß-galactosidase activity. Expression profiles of time series after OTX2 induction in MED8A showed early upregulation of cell cycle genes related to the G(2)-M phase, such as AURKA, CDC25C, and CCNG2. Paradoxically, G(1)-S phase genes such as MYC, CDK4, CDK6, CCND1, and CCND2 were strongly downregulated, in line with the observed G(1) arrest. ChIP-on-chip analyses of OTX2 binding to promoter regions in MED8A and DAOY showed a strong enrichment for binding to the G(2)-M genes, suggesting a direct activation. Their mRNA expression correlated with OTX2 expression in primary tumors, underscoring the in vivo relevance of this regulation. OTX2 induction activated the P53 pathway in MED8A, but not in DAOY, which carries a mutated P53 gene. In DAOY cells, senescence-associated secretory factors, such as interleukin-6 and insulin-like growth factor binding protein 7, were strongly upregulated after OTX2 induction. We hypothesize that the imbalance in cell cycle stimulation by OTX2 leads to cellular senescence either by activating the P53 pathway or through the induction of secretory factors. Our data indicate that OTX2 directly induces a series of cell cycle genes but requires cooperating genes for an oncogenic acceleration of the cell cycle.


Assuntos
Ciclo Celular/genética , Senescência Celular/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Meduloblastoma/metabolismo , Fatores de Transcrição Otx/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Humanos , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética
18.
PLoS One ; 3(8): e3088, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18769486

RESUMO

BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.


Assuntos
Neoplasias Cerebelares/genética , Perfilação da Expressão Gênica , Genômica , Meduloblastoma/genética , Adolescente , Adulto , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA de Neoplasias/genética , Feminino , Humanos , Masculino , Meduloblastoma/classificação , Meduloblastoma/patologia , Hibridização de Ácido Nucleico , RNA Neoplásico/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA