Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(42): 11749-11760, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920359

RESUMO

Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.

2.
Biomacromolecules ; 24(12): 5940-5950, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033171

RESUMO

Polymer micelles/vesicles made of a red-light-responsive Ru(II)-containing block copolymer (PolyRu) are elaborated as a model system for anticancer phototherapy. PolyRu is composed of PEG and a hydrophobic polypeptoid bearing thioether side chains, 40% of which are coordinated with [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)](PF6)2 via the Ru-S bond, resulting in a 67 wt % Ru complex loading capacity. Red-light illumination induces the photocleavage of the Ru-S bond and produces [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)(H2O)](PF6)2. Meanwhile, ROS are generated under the photosensitization of the Ru complex and oxidize hydrophobic thioether to hydrophilic sulfoxide, causing the disruption of micelles/vesicles. During the disruption, ROS generation and Ru complex release are synergistically enhanced. PolyRu micelles/vesicles are taken up by cancer cells while they exhibit very low cytotoxicity in the dark. In contrast, they show much higher cytotoxicity under red-light irradiation. PolyRu micelles/vesicles are promising nanoassembly prototypes that protect metallodrugs in the dark but exhibit light-activated anticancer effects with spatiotemporal control for photoactivated chemotherapy and photodynamic therapy.


Assuntos
Complexos de Coordenação , Rutênio , Espécies Reativas de Oxigênio , Rutênio/farmacologia , Rutênio/química , Liberação Controlada de Fármacos , Micelas , Fototerapia/métodos , Polímeros/química , Sulfetos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
3.
Inorg Chem ; 62(45): 18510-18523, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37913550

RESUMO

Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 µM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Complexos de Coordenação/química , Rutênio/farmacologia , Rutênio/química , Oxigênio Singlete/metabolismo , DNA , Ligantes
4.
Chemistry ; 29(61): e202301742, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37548580

RESUMO

Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Complexos de Coordenação/farmacologia , Corantes , Neoplasias/tratamento farmacológico , Rutênio/farmacologia
5.
Angew Chem Int Ed Engl ; 62(20): e202218347, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917074

RESUMO

Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L. Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2 (2,2'-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Osmio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Rutênio/farmacologia , Rutênio/química
6.
Chem Sci ; 14(2): 362-371, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687351

RESUMO

The in vitro to in vivo translation of metal-based cytotoxic drugs has proven to be a significant hurdle in their establishment as effective anti-cancer alternatives. Various nano-delivery systems, such as polymeric nanoparticles, have been explored to address the pharmacokinetic limitations associated with the use of these complexes. However, these systems often suffer from poor stability or involve complex synthetic procedures. To circumvent these problems, we report here a simple, one-pot procedure for the preparation of covalently-attached Ru-polylactide nanoparticles. This methodology relies on the ring-opening polymerization of lactide initiated by a calcium alkoxide derivative formed from calcium bis(trimethylsilyl amide) and a hydroxyl-bearing ruthenium complex. This procedure proceeds with high efficiency (near-quantitative incorporation of Ru in the polymer) and enables the preparation of polymers with varying molecular weights (2000-11000 Da) and high drug loadings (up to 68% w/w). These polymers were formulated as narrowly dispersed nanoparticles (110 nm) that exhibited a slow and predictable release of the ruthenium payload. Unlike standard encapsulation methods routinely used, the release kinetics of these nanoparticles is controlled and may be adjusted on demand, by tuning the size of the polymer chain. In terms of cytotoxicity, the nanoparticles were assessed in the ovarian cancer cell line A2780 and displayed potency comparable to cisplatin and the free drug, in the low micromolar range. Interestingly, the activity was maintained when tested in a cisplatin-resistant cell line, suggesting a possible orthogonal mechanism of action. Additionally, the internalization in tumour cells was found to be significantly higher than the free ruthenium complex (>200 times in some cases), clearly showcasing the added benefit in the drug's cellular permeation and accumulation of the drug. Finally, the in vivo performance was evaluated for the first time in mice. The experiments showed that the intravenously injected nanoparticles were well tolerated and were able to significantly improve the pharmacokinetics and biodistribution of the parent drug. Not only was the nanosystem able to promote an 18-fold increase in tumour accumulation, but it also allowed a considerable reduction of drug accumulation in vital organs, achieving, for example, reduction levels of 90% and 97% in the brain and lungs respectively. In summary, this simple and efficient one-pot procedure enables the generation of stable and predictable nanoparticles capable of improving the cellular penetration and systemic accumulation of the Ru drug in the tumour. Altogether, these results showcase the potential of covalently-loaded ruthenium polylactide nanoparticles and pave the way for its exploitation and application as a viable tool in the treatment of ovarian cancer.

7.
Chembiochem ; 23(19): e202200398, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35924883

RESUMO

Cancer is one of the main causes of death worldwide. Platinum complexes (i. e., cisplatin, carboplatin, and others) are currently heavily used for the treatment of different types of cancer, but unwanted effects occur. Ruthenium complexes have been shown to be potential promising alternatives to these metal-based drugs. In this work, we performed a structure-activity relationship (SAR) study on two small series of Ru(II) polypyridyl complexes of the type [Ru(L1)2 (O^O)]Cln (3-8), where L1 is 4,7-diphenyl-1,10-phenantroline (DIP) or 1,10-phenantroline (phen), and O^O is a symmetrical anionic dioxo ligand: oxalate (ox, n=0), malonate (mal, n=0), or acetylacetonate (acac, n=1). These two self-consistent series of compounds allowed us to perform a systematic investigation for establishing how the nature of the ligands and the charge affect the anticancer properties of the complexes. Cytotoxicity tests on different cell lines demonstrated that some of the six compounds 3-8 have a promising anticancer activity. More specifically, the cationic complex [Ru(DIP)2 (η2 -acac)]Cl (4) has IC50 values in the mid-nanomolar concentration range, lower than those of cisplatin on the same cell lines. Interestingly, [Ru(DIP)2 (η2 -acac)]Cl was found to localize mainly in the mitochondria, whereas a smaller fraction was detected in the nucleus. Overall, our SAR investigation demonstrates the importance of combining the positive charge of the complex with the highly lipophilic diimine ligand DIP.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Antineoplásicos/farmacologia , Carboplatina , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Malonatos , Oxalatos , Platina , Rutênio/farmacologia , Relação Estrutura-Atividade
8.
Inorg Chem ; 61(34): 13576-13585, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960605

RESUMO

Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.


Assuntos
Complexos de Coordenação , Nanopartículas , Fotoquimioterapia , Rutênio , Biotina , Fármacos Fotossensibilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA