Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(6): 1203-1212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816647

RESUMO

Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.


Assuntos
Adenosina Trifosfatases , Fator de Ligação a CCCTC , Cromatina , Proteínas Repressoras , Fatores de Transcrição , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Cromatina/metabolismo , Cromatina/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Ligação Proteica , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sítios de Ligação
2.
Nat Struct Mol Biol ; 30(7): 948-957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386214

RESUMO

The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
3.
Int J Comput Assist Radiol Surg ; 18(6): 1109-1118, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37140737

RESUMO

PURPOSE: Minimally invasive surgeries have restricted surgical ports, demanding a high skill level from the surgeon. Surgical simulation potentially reduces this steep learning curve and additionally provides quantitative feedback. Markerless depth sensors show great promise for quantification, but most such sensors are not designed for accurate reconstruction of complex anatomical forms in close-range. METHODS: This work compares three commercially available depth sensors, namely the Intel D405, D415, and the Stereolabs Zed-Mini in the range of 12-20 cm, for use in surgical simulation. Three environments are designed that closely mimic surgical simulation, comprising planar surfaces, rigid objects, and mitral valve models of silicone and realistic porcine tissue. The cameras are evaluated on Z-accuracy, temporal noise, fill rate, checker distance, point cloud comparisons, and visual inspection of surgical scenes, across several camera settings. RESULTS: The Intel cameras show sub-mm accuracy in most static environments. The D415 fails in reconstructing valve models, while the Zed-Mini provides lesser temporal noise and higher fill rate. The D405 could reconstruct anatomical structures like the mitral valve leaflet and a ring prosthesis, but performs poorly for reflective surfaces like surgical tools and thin structures like sutures. CONCLUSION: If a high temporal resolution is needed and lower spatial resolution is acceptable, the Zed-Mini is the best choice, whereas the Intel D405 is the most suited for close-range applications. The D405 shows potential for applications like deformable registration of surfaces, but is not yet suitable for applications like real-time tool tracking or surgical skill assessment.


Assuntos
Insuficiência da Valva Mitral , Cirurgiões , Animais , Suínos , Humanos , Simulação por Computador , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos
4.
Spine (Phila Pa 1976) ; 48(5): 310-320, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730060

RESUMO

STUDY DESIGN: A Prospective cohort study. OBJECTIVE: To investigate the incidence, etiology, and outcomes of patients who experience neurological deterioration after surgery for Degenerative Cervical Myelopathy (DCM). SUMMARY OF BACKGROUND DATA: Postoperative neurological deterioration is one of the most undesirable complications that can occur after surgery for DCM. METHODS: We analyzed data from the Canadian Spine Outcomes and Research Network DCM prospective cohort study. We defined postoperative neurological deterioration as any decrease in modified Japanese Orthopaedic Association (mJOA) score by at least one point from baseline to three months after surgery. Adverse events were collected using the Spinal Adverse Events Severity protocol. Secondary outcomes included patient-reported pain, disability, and health-related quality of life. RESULTS: Among a study cohort of 428 patients, 50 (12%) deteriorated by at least one mJOA point after surgery for DCM (21 by one point, 15 by two points, and 14 by three points or more). Significant risk factors included older age, female sex, and milder disease. Among those who deteriorated, 13 experienced contributing intraoperative or postoperative adverse events, six had alternative non-DCM diagnoses, and 31 did not have an identifiable reason for deterioration. Patients who deteriorated had significantly lower mJOA scores at one year after surgery [13.5 (SD 2.7) vs. 15.2 (SD 2.2), P <0.01 and those with larger deteriorations were less likely to recover their mJOA to at least their preoperative baseline, but most secondary measures of pain, disability, and health-related quality of life were unaffected. CONCLUSIONS: The incidence of deterioration of mJOA scores after surgery for DCM was approximately one in 10, but some deteriorations were unrelated to actual spinal cord impairment and most secondary outcomes were unaffected. These findings can inform patient and surgeon expectations during shared decision-making, and they demonstrate that the interpretation of mJOA scores without clinical context can sometimes be misleading.


Assuntos
Qualidade de Vida , Doenças da Medula Espinal , Humanos , Feminino , Estudos Prospectivos , Vértebras Cervicais/cirurgia , Canadá , Doenças da Medula Espinal/cirurgia , Resultado do Tratamento
5.
Spine J ; 23(4): 492-503, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36336255

RESUMO

BACKGROUND CONTEXT: Unexpected intraoperative positive culture (UIPC) has recently become increasingly common in revision spine surgery, being implicated as an etiological factor in revision spine surgery indications such as implant failure or pseudoarthrosis. PURPOSE: Utilizing the available literature, this study aimed to investigate the prevalence of UIPC, and its clinical importance in patients following presumed aseptic revision spine surgery. STUDY DESIGN: Meta-analysis and systematic review. METHODS: Multiple databases and reference articles were searched until May 2022. The primary outcome was the pooled rate of UIPC, and the secondary outcomes were the microbiological profile of UIPC, the risk factors of UIPC, and the clinical fate of UIPC. RESULTS: Twelve studies were eligible for meta-analysis, with a total of 1,108 patients. The pooled rate of UIPC was 24.3% (95% CI=15.8%-35.5%) in adult patients, and 43.2% (95% CI=32.9%-54.2%) in pediatric patients. The UIPC rate was higher when both conventional wound culture and sonication were used together compared to sonication alone or conventional wound culture alone. The rates were 28.9%, 23.6%, and 15.5 %, respectively. In adult and pediatric patients, the most commonly cultured organism was Cutibacterium acnes (42.5% vs 57.7%), followed by coagulase-negative Staphylococcus (39.9% vs 30.5%). Male patients had a higher rate of UIPC (OR= 2.6, 95% CI=1.84-3.72, p<.001), as did patients with a longer fusion construct (MD=0.76, 95% CI=0.27-1.25, p<.001). CONCLUSIONS: The pooled rate of UIPC in aseptic spine revision surgery was 24.3% and 43.2% in adult and pediatric patients respectively. The most common organisms were C. acnes and coagulase-negative Staphylococcus. The impact of UIPC on patients` clinical outcomes is not fully understood. We are not able to recommend routine culture in revision spine surgery, however, adding sonication may aid in the diagnosis of UIPC. There is not enough evidence to recommend specific treatment strategies at this time, and further studies are warranted.


Assuntos
Coagulase , Infecções Relacionadas à Prótese , Adulto , Humanos , Masculino , Criança , Reoperação , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/cirurgia , Coluna Vertebral/cirurgia , Fatores de Risco , Estudos Retrospectivos
6.
Nature ; 596(7870): 133-137, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34234345

RESUMO

The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Regulação da Expressão Gênica , Genes Essenciais , Humanos , Camundongos , Imagem Individual de Molécula
7.
Nat Commun ; 11(1): 2680, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471981

RESUMO

DNA methylation is considered a stable epigenetic mark, yet methylation patterns can vary during differentiation and in diseases such as cancer. Local levels of DNA methylation result from opposing enzymatic activities, the rates of which remain largely unknown. Here we developed a theoretical and experimental framework enabling us to infer methylation and demethylation rates at 860,404 CpGs in mouse embryonic stem cells. We find that enzymatic rates can vary as much as two orders of magnitude between CpGs with identical steady-state DNA methylation. Unexpectedly, de novo and maintenance methylation activity is reduced at transcription factor binding sites, while methylation turnover is elevated in transcribed gene bodies. Furthermore, we show that TET activity contributes substantially more than passive demethylation to establishing low methylation levels at distal enhancers. Taken together, our work unveils a genome-scale map of methylation kinetics, revealing highly variable and context-specific activity for the DNA methylation machinery.


Assuntos
Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Desmetilação do DNA , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Mapeamento Cromossômico , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Epigênese Genética/genética , Genoma/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , DNA Metiltransferase 3B
8.
Nat Commun ; 9(1): 4048, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279501

RESUMO

Regulation of transcription, replication, and cell division relies on differential protein binding to DNA and chromatin, yet it is unclear which regulatory components remain bound to compacted mitotic chromosomes. By utilizing the buoyant density of DNA-protein complexes after cross-linking, we here develop a mass spectrometry-based approach to quantify the chromatin-associated proteome at separate stages of the cell cycle. While epigenetic modifiers that promote transcription are lost from mitotic chromatin, repressive modifiers generally remain associated. Furthermore, while proteins involved in transcriptional elongation are evicted, most identified transcription factors are retained on mitotic chromatin to varying degrees, including core promoter binding proteins. This predicts conservation of the regulatory landscape on mitotic chromosomes, which we confirm by genome-wide measurements of chromatin accessibility. In summary, this work establishes an approach to study chromatin, provides a comprehensive catalog of chromatin changes during the cell cycle, and reveals the degree to which the genomic regulatory landscape is maintained through mitosis.


Assuntos
Ciclo Celular , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteômica/métodos , Linhagem Celular Tumoral , Cromatina/química , Humanos , Espectrometria de Massas , Fatores de Transcrição/metabolismo
9.
PLoS Genet ; 13(12): e1007102, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267285

RESUMO

Genomic location can inform on potential function and recruitment signals for chromatin-associated proteins. High mobility group (Hmg) proteins are of similar size as histones with Hmga1 and Hmga2 being particularly abundant in replicating normal tissues and in cancerous cells. While several roles for Hmga proteins have been proposed we lack a comprehensive description of their genomic location as a function of chromatin, DNA sequence and functional domains. Here we report such a characterization in mouse embryonic stem cells in which we introduce biotin-tagged constructs of wild-type and DNA-binding domain mutants. Comparative analysis of the genome-wide distribution of Hmga proteins reveals pervasive binding, a feature that critically depends on a functional DNA-binding domain and which is shared by both Hmga proteins. Assessment of the underlying queues instructive for this binding modality identifies AT richness, defined as high frequency of A or T bases, as the major criterion for local binding. Additionally, we show that other chromatin states such as those linked to cis-regulatory regions have little impact on Hmga binding both in stem and differentiated cells. As a consequence, Hmga proteins are preferentially found at AT-rich regions such as constitutively heterochromatic regions but are absent from enhancers and promoters arguing for a limited role in regulating individual genes. In line with this model, we show that genetic deletion of Hmga proteins in stem cells causes limited transcriptional effects and that binding is conserved in neuronal progenitors. Overall our comparative study describing the in vivo binding modality of Hmga1 and Hmga2 identifies the proteins' preference for AT-rich DNA genome-wide and argues against a suggested function of Hmga at regulatory regions. Instead we discover pervasive binding with enrichment at regions of higher AT content irrespective of local variation in chromatin modifications.


Assuntos
Sequência Rica em At , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Animais , Composição de Bases , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
10.
Nat Commun ; 6: 8324, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26477271

RESUMO

A widely accepted model posits that activation of enhancers during differentiation goes through a priming step prior to lineage commitment. To investigate the chronology of enhancer repertoire establishment during hematopoiesis, we monitored epigenome dynamics during three developmental stages representing hematopoietic stem cells, B-cell progenitors and mature B-cells. We find that only a minority of enhancers primed in stem cells or progenitors become active at later stages. Furthermore, most enhancers active in differentiated cells were not primed in earlier stages. Thus, the enhancer repertoire is reshaped dynamically during B-cell differentiation and enhancer priming in early stages does not appear to be an obligate step for enhancer activation. Furthermore, our data reveal that heterochromatin and Polycomb-mediated silencing have only a minor contribution in shaping enhancer repertoires during cell differentiation. Together, our data revisit the prevalent model about epigenetic reprogramming during hematopoiesis and give insights into the formation of gene regulatory networks.


Assuntos
Linfócitos B/metabolismo , Elementos Facilitadores Genéticos , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Animais , Imunoprecipitação da Cromatina , Epigenômica , Inativação Gênica , Heterocromatina/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Grupo Polycomb/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(33): E3415-21, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092339

RESUMO

Trimethylation of histone H3 at lysine 27 (H3K27me3) is a chromatin mark associated with Polycomb-mediated gene repression. Despite its critical role in development, it remains largely unclear how this mark is targeted to defined loci in mammalian cells. Here, we use iterative genome editing to identify small DNA sequences capable of autonomously recruiting Polycomb. We inserted 28 DNA elements at a defined chromosomal position in mouse embryonic stem cells and assessed their ability to promote H3K27me3 deposition. Combined with deletion analysis, we identified DNA elements as short as 220 nucleotides that correctly recapitulate endogenous H3K27me3 patterns. Functional Polycomb recruiter sequences are invariably CpG-rich but require protection against DNA methylation. Alternatively, their activity can be blocked by placement of an active promoter-enhancer pair in cis. Taken together, these data support the model whereby PRC2 recruitment at specific targets in mammals is positively regulated by local CpG density yet obstructed by transcriptional activity or DNA methylation.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Histonas/metabolismo , Lisina/química , Animais , Linhagem Celular Tumoral , Histonas/química , Camundongos , Transcrição Gênica
12.
Genes Dev ; 28(6): 652-64, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637118

RESUMO

The mammalian intestinal epithelium has a unique organization in which crypts harboring stem cells produce progenitors and finally clonal populations of differentiated cells. Remarkably, the epithelium is replaced every 3-5 d throughout adult life. Disrupted maintenance of the intricate balance of proliferation and differentiation leads to loss of epithelial integrity or barrier function or to cancer. There is a tight correlation between the epigenetic status of genes and expression changes during differentiation; however, the mechanism of how changes in DNA methylation direct gene expression and the progression from stem cells to their differentiated descendants is unclear. Using conditional gene ablation of the maintenance methyltransferase Dnmt1, we demonstrate that reducing DNA methylation causes intestinal crypt expansion in vivo. Determination of the base-resolution DNA methylome in intestinal stem cells and their differentiated descendants shows that DNA methylation is dynamic at enhancers, which are often associated with genes important for both stem cell maintenance and differentiation. We establish that the loss of DNA methylation at intestinal stem cell gene enhancers causes inappropriate gene expression and delayed differentiation.


Assuntos
Diferenciação Celular , Metilação de DNA , Intestino Delgado/citologia , Células-Tronco/citologia , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
13.
Nat Commun ; 4: 2478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24072229

RESUMO

Topoisomerases resolve torsional stress, while their function in gene regulation, especially during cellular differentiation, remains unknown. Here we find that the expression of topo II isoforms, topoisomerase IIα and topoisomerase IIß, is the characteristic of dividing and postmitotic tissues, respectively. In embryonic stem cells, topoisomerase IIα preferentially occupies active gene promoters. Topoisomerase IIα inhibition compromises genomic integrity, which results in epigenetic changes, altered kinetics of RNA Pol II at target promoters and misregulated gene expression. Common targets of topoisomerase IIα and topoisomerase IIß are housekeeping genes, while unique targets are involved in proliferation/pluripotency and neurogenesis, respectively. Topoisomerase IIα targets exhibiting bivalent chromatin resolve upon differentiation, concomitant with their activation and occupancy by topoisomerase IIß, features further observed for long genes. These long silent genes display accessible chromatin in embryonic stem cells that relies on topoisomerase IIα activity. These findings suggest that topoisomerase IIα not only contributes to stem-cell transcriptome regulation but also primes developmental genes for subsequent activation upon differentiation.


Assuntos
Antígenos de Neoplasias/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Antígenos de Neoplasias/metabolismo , Diferenciação Celular , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Genes Essenciais , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
14.
J Vis Exp ; (41)2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20644507

RESUMO

RNA transcripts are subjected to post-transcriptional gene regulation by interacting with hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) that are often expressed in a cell-type dependently. To understand how the interplay of these RNA-binding factors affects the regulation of individual transcripts, high resolution maps of in vivo protein-RNA interactions are necessary. A combination of genetic, biochemical and computational approaches are typically applied to identify RNA-RBP or RNA-RNP interactions. Microarray profiling of RNAs associated with immunopurified RBPs (RIP-Chip) defines targets at a transcriptome level, but its application is limited to the characterization of kinetically stable interactions and only in rare cases allows to identify the RBP recognition element (RRE) within the long target RNA. More direct RBP target site information is obtained by combining in vivo UV crosslinking with immunoprecipitation followed by the isolation of crosslinked RNA segments and cDNA sequencing (CLIP). CLIP was used to identify targets of a number of RBPs. However, CLIP is limited by the low efficiency of UV 254 nm RNA-protein crosslinking, and the location of the crosslink is not readily identifiable within the sequenced crosslinked fragments, making it difficult to separate UV-crosslinked target RNA segments from background non-crosslinked RNA fragments also present in the sample. We developed a powerful cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs that we term PAR-CliP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) (see Fig. 1A for an outline of the method). The method relies on the incorporation of photoreactive ribonucleoside analogs, such as 4-thiouridine (4-SU) and 6-thioguanosine (6-SG) into nascent RNA transcripts by living cells. Irradiation of the cells by UV light of 365 nm induces efficient crosslinking of photoreactive nucleoside-labeled cellular RNAs to interacting RBPs. Immunoprecipitation of the RBP of interest is followed by isolation of the crosslinked and coimmunoprecipitated RNA. The isolated RNA is converted into a cDNA library and deep sequenced using Solexa technology. One characteristic feature of cDNA libraries prepared by PAR-CliP is that the precise position of crosslinking can be identified by mutations residing in the sequenced cDNA. When using 4-SU, crosslinked sequences thymidine to cytidine transition, whereas using 6-SG results in guanosine to adenosine mutations. The presence of the mutations in crosslinked sequences makes it possible to separate them from the background of sequences derived from abundant cellular RNAs. Application of the method to a number of diverse RNA binding proteins was reported in Hafner et al.


Assuntos
Perfilação da Expressão Gênica/métodos , Imunoprecipitação/métodos , MicroRNAs/análise , Proteínas de Ligação a RNA/análise , Ribonucleoproteínas/análise , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Fotoquímicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA