Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504626

RESUMO

Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as an alternative to insecticides. Combining genome, isoform sequencing (Iso-Seq), and RNA sequencing (RNA-seq) data, we isolated and characterized two sex-determination genes, W. magnifica transformer (Wmtra) and W. magnifica transformer2 (Wmtra2), whose orthologs in a number of insect pests have been utilized to develop genetic control approaches. Wmtra transcripts are sex-specifically spliced; only the female transcript encodes a full-length functional protein, while the male transcript encodes a truncated and non-functional polypeptide due to the presence of the male-specific exon containing multiple in-frame stop codons. The existence of five predicted TRA/TRA2 binding sites in the male-specific exon and the surrounding intron of Wmtra, as well as the presence of an RNA-recognition motif in WmTRA2 may suggest the auto-regulation of Wmtra by its own protein interacting with WmTRA2. This results in the skipping of the male-specific exon and translation of the full-length functional protein only in females. Our comparative study in dipteran species showed that both the WmTRA and WmTRA2 proteins exhibit a high degree of similarity to their orthologs in the myiasis-causing blow flies. Additionally, transcriptome profiling performed between adult females and adult males reported 657 upregulated and 365 downregulated genes. Functional analysis showed that among upregulated genes those related to meiosis and mitosis Gene Ontology (GO) terms were enriched, while, among downregulated genes, those related to muscle cell development and aerobic metabolic processes were enriched. Among the female-biased gene set, we detected five candidate genes, vasa (vas), nanos (nanos), bicoid (bcd), Bicaudal C (BicC), and innexin5 (inx5). The promoters of these genes may be able to upregulate Cas9 expression in the germline in Cas9-based homing gene drive systems as established in some flies and mosquitoes. The isolation and characterization of these genes is an important step toward the development of genetic control programs against W. magnifica infestation.

2.
Commun Biol ; 4(1): 779, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163009

RESUMO

The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.


Assuntos
Água Corporal/metabolismo , Camelus/fisiologia , Colesterol/fisiologia , Rim/metabolismo , Animais , Aquaporina 2/fisiologia , Desidratação/metabolismo , Clima Desértico , Metabolismo dos Lipídeos , Masculino , Proteoma , ATPase Trocadora de Sódio-Potássio/fisiologia , Transcriptoma
3.
Sci Rep ; 8(1): 1982, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386528

RESUMO

The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.


Assuntos
Camelus/genética , Genoma , Mapeamento de Híbridos Radioativos , Animais , Cricetinae , DNA/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA