Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 12(1): 10568, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732702

RESUMO

Microtubule-associated serine/threonine kinase-like (MASTL) has emerged as a critical regulator of mitosis and as a potential oncogene in a variety of cancer types. To date, Arpp-19/ENSA are the only known substrates of MASTL. However, with the roles of MASTL expanding and increased interest in development of MASTL inhibitors, it has become critical to determine if there are additional substrates and what the optimal consensus motif for MASTL is. Here we utilized a whole cell lysate in vitro kinase screen combined with stable isotope labelling of amino acids in cell culture (SILAC) to identify potential substrates and the residue preference of MASTL. Using the related AGC kinase family members AKT1/2, the kinase screen identified several known and new substrates highly enriched for the validated consensus motif of AKT. Applying this method to MASTL identified 59 phospho-sites on 67 proteins that increased in the presence of active MASTL. Subsequent in vitro kinase assays suggested that MASTL may phosphorylate hnRNPM, YB1 and TUBA1C under certain in vitro conditions. Taken together, these data suggest that MASTL may phosphorylate several additional substrates, providing insight into the ever-increasing biological functions and roles MASTL plays in driving cancer progression and therapy resistance.


Assuntos
Proteínas Associadas aos Microtúbulos , Neoplasias , Proteínas Serina-Treonina Quinases , Técnicas de Cultura de Células , Humanos , Marcação por Isótopo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
2.
PLoS Genet ; 17(10): e1009334, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710087

RESUMO

Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3ß/ß-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3ß. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neocórtex/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Carcinogênese/metabolismo , Células Cultivadas , Citocinese/fisiologia , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Fenótipo
3.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586840

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

5.
Hum Mol Genet ; 31(1): 133-145, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34387338

RESUMO

Charcot-Marie-Tooth (CMT) is a commonly inherited, non-fatal neurodegenerative disorder that affects sensory and motor neurons in patients. More than 90 genes are known to cause axonal and demyelinating forms of CMT. The p.R158H mutation in the pyruvate dehydrogenase kinase 3 (PDK3) gene is the genetic cause for an X linked form of axonal CMT (CMTX6). In vitro studies using patient fibroblasts and iPSC-derived motor neurons have shown that this mutation causes deficits in energy metabolism and mitochondrial function. Animal models that recapitulate pathogenic in vivo events in patients are crucial for investigating mechanisms of axonal degeneration and developing therapies for CMT. We have developed a C. elegans model of CMTX6 by knocking-in the p.R158H mutation in pdhk-2, the ortholog of PDK3. In addition, we have developed animal models overexpressing the wild type and mutant form of human PDK3 specifically in the GABAergic motor neurons of C. elegans. CMTX6 mutants generated in this study exhibit synaptic transmission deficits, locomotion defects and show signs of progressive neurodegeneration. Furthermore, the CMTX6 in vivo models display energy deficits that recapitulate the phenotype observed in patient fibroblasts and iPSC-derived motor neurons. Our CMTX6 animals represent the first in vivo model for this form of CMT and have provided novel insights into the cellular function and metabolic pathways perturbed by the p.R158H mutation, all the while closely replicating the clinical presentation observed in CMTX6 patients.


Assuntos
Doença de Charcot-Marie-Tooth , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Humanos , Mutação , Fenótipo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transmissão Sináptica/genética
6.
Elife ; 102021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33983115

RESUMO

We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single-cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases , Rad51 Recombinase , Análise de Célula Única , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Commun Biol ; 3(1): 593, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087841

RESUMO

High expression of centrosomal protein CEP55 has been correlated with clinico-pathological parameters across multiple human cancers. Despite significant in vitro studies and association of aberrantly overexpressed CEP55 with worse prognosis, its causal role in vivo tumorigenesis remains elusive. Here, using a ubiquitously overexpressing transgenic mouse model, we show that Cep55 overexpression causes spontaneous tumorigenesis and accelerates Trp53+/- induced tumours in vivo. At the cellular level, using mouse embryonic fibroblasts (MEFs), we demonstrate that Cep55 overexpression induces proliferation advantage by modulating multiple cellular signalling networks including the hyperactivation of the Pi3k/Akt pathway. Notably, Cep55 overexpressing MEFs have a compromised Chk1-dependent S-phase checkpoint, causing increased replication speed and DNA damage, resulting in a prolonged aberrant mitotic division. Importantly, this phenotype was rescued by pharmacological inhibition of Pi3k/Akt or expression of mutant Chk1 (S280A) protein, which is insensitive to regulation by active Akt, in Cep55 overexpressing MEFs. Moreover, we report that Cep55 overexpression causes stabilized microtubules. Collectively, our data demonstrates causative effects of deregulated Cep55 on genome stability and tumorigenesis which have potential implications for tumour initiation and therapy development.


Assuntos
Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Expressão Gênica , Instabilidade Genômica , Animais , Biomarcadores Tumorais , Biópsia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Suscetibilidade a Doenças , Fibroblastos/metabolismo , Genótipo , Imuno-Histoquímica , Cariótipo , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Mitose , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Cancers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823571

RESUMO

Genome doubling is an underlying cause of cancer cell aneuploidy and genomic instability, but few drivers have been identified for this process. Due to their physiological roles in the genome reduplication of normal cells, we hypothesised that the oncogenes cyclins E1 and E2 may be drivers of genome doubling in cancer. We show that both cyclin E1 (CCNE1) and cyclin E2 (CCNE2) mRNA are significantly associated with high genome ploidy in breast cancers. By live cell imaging and flow cytometry, we show that cyclin E2 overexpression promotes aberrant mitosis without causing mitotic slippage, and it increases ploidy with negative feedback on the replication licensing protein, Cdt1. We demonstrate that cyclin E2 localises with core preRC (pre-replication complex) proteins (MCM2, MCM7) on the chromatin of cancer cells. Low CCNE2 is associated with improved overall survival in breast cancers, and we demonstrate that low cyclin E2 protects from excess genome rereplication. This occurs regardless of p53 status, consistent with the association of high cyclin E2 with genome doubling in both p53 null/mutant and p53 wildtype cancers. In contrast, while cyclin E1 can localise to the preRC, its downregulation does not prevent rereplication, and overexpression promotes polyploidy via mitotic slippage. Thus, in breast cancer, cyclin E2 has a strong association with genome doubling, and likely contributes to highly proliferative and genomically unstable breast cancers.

9.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823952

RESUMO

Y-box binding protein-1 (YB-1) is a multifunctional oncoprotein that has been shown to regulate proliferation, invasion and metastasis in a variety of cancer types. We previously demonstrated that YB-1 is overexpressed in mesothelioma cells and its knockdown significantly reduces tumour cell proliferation, migration, and invasion. However, the mechanisms driving these effects are unclear. Here, we utilised an unbiased RNA-seq approach to characterise the changes to gene expression caused by loss of YB-1 knockdown in three mesothelioma cell lines (MSTO-211H, VMC23 and REN cells). Bioinformatic analysis showed that YB-1 knockdown regulated 150 common genes that were enriched for regulators of mitosis, integrins and extracellular matrix organisation. However, each cell line also displayed unique gene expression signatures, that were differentially enriched for cell death or cell cycle control. Interestingly, deregulation of STAT3 and p53-pathways were a key differential between each cell line. Using flow cytometry, apoptosis assays and single-cell time-lapse imaging, we confirmed that MSTO-211H, VMC23 and REN cells underwent either increased cell death, G1 arrest or aberrant mitotic division, respectively. In conclusion, this data indicates that YB-1 knockdown affects a core set of genes in mesothelioma cells. Loss of YB-1 causes a cascade of events that leads to reduced mesothelioma proliferation, dependent on the underlying functionality of the STAT3/p53-pathways and the genetic landscape of the cell.

10.
J Clin Invest ; 130(8): 4006-4018, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32568216

RESUMO

Ligand-dependent activation of Hedgehog (Hh) signaling in cancer occurs without mutations in canonical pathway genes. Consequently, the genetic basis of Hh pathway activation in adult solid tumors, such as small-cell lung cancer (SCLC), is unknown. Here we show that combined inactivation of Trp53 and Rb1, a defining genetic feature of SCLC, leads to hypersensitivity to Hh ligand in vitro, and during neural tube development in vivo. This response is associated with the aberrant formation of primary cilia, an organelle essential for canonical Hh signaling through smoothened, a transmembrane protein targeted by small-molecule Hh inhibitors. We further show that loss of both Trp53 and Rb1 disables transcription of genes in the autophagic machinery necessary for the degradation of primary cilia. In turn, we also demonstrate a requirement for Kif3a, a gene essential for the formation of primary cilia, in a mouse model of SCLC induced by conditional deletion of both Trp53 and Rb1 in the adult airway. Our results provide a mechanistic framework for therapeutic targeting of ligand-dependent Hh signaling in human cancers with somatic mutations in both TP53 and RB1.


Assuntos
Autofagia , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Hedgehog/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas de Ligação a Retinoblastoma/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Supressora de Tumor p53/genética
11.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513387

RESUMO

The identification of clinically viable strategies for overcoming resistance to platinum chemotherapy in lung adenocarcinoma has previously been hampered by inappropriately tailored in vitro assays of drug response. Therefore, using a pulse model that closely mimics the in vivo pharmacokinetics of platinum therapy, we profiled cisplatin-induced signalling, DNA-damage and apoptotic responses across a panel of human lung adenocarcinoma cell lines. By coupling this data to real-time, single-cell imaging of cell cycle and apoptosis we provide a fine-grained stratification of response, where a P70S6K-mediated signalling axis promotes resistance on a TP53 wildtype or null background, but not a mutant TP53 background. This finding highlights the value of in vitro models that match the physiological pharmacokinetics of drug exposure. Furthermore, it also demonstrates the importance of a mechanistic understanding of the interplay between somatic mutations and the signalling networks that govern drug response for the implementation of any consistently effective, patient-specific therapy.


Lung adenocarcinoma is the most common type of lung cancer, and it emerges because of a variety of harmful genetic changes, or mutations. Two lung cancer patients ­ or indeed, two different sets of cancerous cells within a patient ­ may therefore carry different damaging mutations. A group of drugs called platinum-based chemotherapies are currently the most effective way to treat lung adenocarcinoma. Yet, only 30% of patients actually respond to the therapy. Many studies conducted in laboratory settings have tried to understand why most cases are resistant to treatment, with limited success. Here, Hastings, Gonzalez-Rajal et al. propose that previous research has been inconclusive because studies done in the laboratory do not reflect how the treatment is actually administered. In patients, platinum-based drugs are cleared from the body within a few hours, but during experiments, the treatment is continually administered to cells growing in a dish. Hastings, Gonzalez-Rajal et al. therefore developed a laboratory method that mimics the way cells are exposed to platinum-based chemotherapy in the body. These experiments showed that the lung adenocarcinoma cells which resisted treatment also carried high levels of a protein known as P70S6K. Pairing platinum-based chemotherapy with a drug that blocks the activity of P70S6K killed these resistant cells. This combination also treated human lung adenocarcinoma tumours growing under the skin of mice. However, it was ineffective on cancerous cells that carry a mutation in a protein called p53, which is often defective in cancers. Overall, this work demonstrates the need to refine how drugs are tested in the laboratory to better reflect real-life conditions. It also underlines the importance of personalizing drug combinations to the genetic background of each tumour, a concept that will be vital to consider in future clinical trials.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos
13.
Mol Oncol ; 14(1): 22-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733171

RESUMO

Ultraviolet radiation-induced DNA mutations are a primary environmental driver of melanoma. The reason for this very high level of unrepaired DNA lesions leading to these mutations is still poorly understood. The primary DNA repair mechanism for UV-induced lesions, that is, the nucleotide excision repair pathway, appears intact in most melanomas. We have previously reported a postreplication repair mechanism that is commonly defective in melanoma cell lines. Here we have used a genome-wide approach to identify the components of this postreplication repair mechanism. We have used differential transcript polysome loading to identify transcripts that are associated with UV response, and then functionally assessed these to identify novel components of this repair and cell cycle checkpoint network. We have identified multiple interaction nodes, including global genomic nucleotide excision repair and homologous recombination repair, and previously unexpected MASTL pathway, as components of the response. Finally, we have used bioinformatics to assess the contribution of dysregulated expression of these pathways to the UV signature mutation load of a large melanoma cohort. We show that dysregulation of the pathway, especially the DNA damage repair components, are significant contributors to UV mutation load, and that dysregulation of the MASTL pathway appears to be a significant contributor to high UV signature mutation load.


Assuntos
Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Polirribossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Replicação do DNA/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Estudo de Associação Genômica Ampla , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polirribossomos/genética , Polirribossomos/efeitos da radiação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno , RNA-Seq , Reparo de DNA por Recombinação , Raios Ultravioleta , Regulação para Cima
14.
15.
Front Cell Dev Biol ; 7: 221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632972

RESUMO

Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.

16.
Bull Math Biol ; 81(6): 1965-2010, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903592

RESUMO

Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner-a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2.


Assuntos
Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Comunicação Celular/fisiologia , Simulação por Computador , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Masculino , Conceitos Matemáticos , Metaloproteinase 14 da Matriz/fisiologia , Metaloproteinase 2 da Matriz/fisiologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Análise Espaço-Temporal , Biologia de Sistemas
17.
Respirology ; 24(10): 988-995, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30924257

RESUMO

BACKGROUND AND OBJECTIVE: Publicly funded therapy for idiopathic pulmonary fibrosis (IPF) relies on percentage predicted values from pulmonary function testing, for example Australian patients must have a forced vital capacity ≥50% (%FVC), transfer factor of the lung for carbon monoxide ≥ 30% (%TLco) and forced expiratory volume in 1 s (FEV1 )/FVC ratio > 0.7. Despite defined cut-off values, no jurisdiction prescribes a reference equation for use; multiple equations exist. We hypothesized that access to subsidized treatment varies depending on the chosen equation. The %FVC and %TLco from different commonly used reference equations across general respiratory patients, and IPF-specific patients, were compared. METHODS: FVC and TLco measurements from a large general respiratory laboratory and the Australian Idiopathic Pulmonary Fibrosis Registry (AIPFR) database were analysed using multiple equations. Differences between %FVC and %TLco for each equation were calculated, with particular interest in classification of patients (%) at the threshold for subsidized treatment. RESULTS: A total of 20 378 general respiratory database results were analysed. The %FVC ≥ 50% increased from 86% with the Roca equation to 96% with Quanjer (European Coal and Steal Community, ECSC) and %TLco≥30% increased from 91% with Paoletti to 98% with Thompson. However, overall increase in eligibility for subsidized treatment was modest, varying from 48.2% to 49.2%. A total of 545 AIPFR database results were analysed. The %FVC ≥ 50% increased from 73% with Roca to 94% with Quanjer (ECSC) and %TLco≥30% increased from 87% with Paoletti to 96% with Miller. Overall eligibility for subsidized treatment in the AIPFR group varied from 73.6% to 82.8% between surveyed interstitial lung disease (ILD) centres based entirely on the equation used. CONCLUSION: Substantial variability exists between reference equations, impacting access to subsidized treatment. Treating clinicians should be aware of this when assessing patients around public funding thresholds.


Assuntos
Definição da Elegibilidade/métodos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Conceitos Matemáticos , Idoso , Idoso de 80 Anos ou mais , Austrália , Monóxido de Carbono/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Capacidade Vital
18.
J Orthop Trauma ; 33 Suppl 2: S37-S42, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30688858

RESUMO

Over the past 3 decades, the evolution of pelvic and acetabular surgery has been supported by the advances in intraoperative pelvic fluoroscopic imaging technology. The new Ziehm RFD 3D C-arm unit provides routine fluoroscopic pelvic imaging but also offers rapid and high-quality real-time axial, sagittal, and coronal intraoperative imaging. This technology allows the surgeon to accurately assess fracture reduction, loose body removal, and implant locations while the patient is still under anesthesia. In this way, any necessary corrections can be performed before the patient leaves the operating room. Essentially, this technology should eliminate the need for revision surgeries. In this report, we present our initial experience using this new device.


Assuntos
Fluoroscopia/instrumentação , Fixação Interna de Fraturas , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Cuidados Intraoperatórios/métodos , Ossos Pélvicos/diagnóstico por imagem , Ossos Pélvicos/cirurgia , Acetábulo/diagnóstico por imagem , Acetábulo/lesões , Acetábulo/cirurgia , Desenho de Equipamento , Humanos , Cuidados Intraoperatórios/normas , Ossos Pélvicos/lesões
19.
Front Cell Dev Biol ; 6: 162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555827

RESUMO

MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic substrate phosphorylation is correctly maintained. It achieves this through the phosphorylation of alpha-endosulfine and subsequent inhibition of the tumor suppressor PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel oncogenic kinase that is upregulated in a number of cancer types, correlating with chromosome instability and poor patient survival. While the chromosome instability is likely directly linked to MASTL's control of mitotic phosphorylation, several new studies indicated that MASTL has additional effects outside of mitosis and beyond regulation of PP2A-B55. These include control of normal DNA replication timing, and regulation of AKT/mTOR and Wnt/ß-catenin oncogenic kinase signaling. In this review, we will examine the phenotypes and mechanisms for how MASTL, ENSA, and PP2A-B55 deregulation drives tumor progression and metastasis. Finally, we will explore the rationale for the future development of MASTL inhibitors as new cancer therapeutics.

20.
Sci Transl Med ; 10(451)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045976

RESUMO

Resistance to platinum chemotherapy is a long-standing problem in the management of lung adenocarcinoma. Using a whole-genome synthetic lethal RNA interference screen, we identified activin signaling as a critical mediator of innate platinum resistance. The transforming growth factor-ß (TGFß) superfamily ligands activin A and growth differentiation factor 11 (GDF11) mediated resistance via their cognate receptors through TGFß-activated kinase 1 (TAK1), rather than through the SMAD family of transcription factors. Inhibition of activin receptor signaling or blockade of activin A and GDF11 by the endogenous protein follistatin overcame this resistance. Consistent with the role of activin signaling in acute renal injury, both therapeutic interventions attenuated acute cisplatin-induced nephrotoxicity, its major dose-limiting side effect. This cancer-specific enhancement of platinum-induced cell death has the potential to dramatically improve the safety and efficacy of chemotherapy in lung cancer patients.


Assuntos
Ativinas/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Platina/uso terapêutico , Células A549 , Animais , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Folistatina/uso terapêutico , Humanos , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA