Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Osteoporos Int ; 29(1): 69-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063213

RESUMO

Dairy protein but not plant protein was associated with bone strength of the radius and tibia in older men. These results are consistent with previous results in women and support similar findings related to fracture outcomes. Bone strength differences were largely due to thickness and area of the bone cortex. INTRODUCTION: Our objective was to determine the association of protein intake by source (dairy, non-dairy animal, plant) with bone strength and bone microarchitecture among older men. METHODS: We used data from 1016 men (mean 84.3 years) who attended the Year 14 exam of the Osteoporotic Fractures in Men (MrOS) study, completed a food frequency questionnaire (500-5000 kcal/day), were not taking androgen or androgen agonists, and had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and distal or diaphyseal tibia. Protein was expressed as percentage of total energy intake (TEI); mean ± SD for TEI = 1548 ± 607 kcal/day and for total protein = 16.2 ± 2.9%TEI. We used linear regression with standardized HR-pQCT parameters as dependent variables and adjusted for age, limb length, center, education, race/ethnicity, marital status, smoking, alcohol intake, physical activity level, corticosteroids use, supplement use (calcium and vitamin D), and osteoporosis medications. RESULTS: Higher dairy protein intake was associated with higher estimated failure load at the distal radius and distal tibia [radius effect size = 0.17 (95% CI 0.07, 0.27), tibia effect size = 0.13 (95% CI 0.03, 0.23)], while higher non-dairy animal protein was associated with higher failure load at only the distal radius. Plant protein intake was not associated with failure load at any site. CONCLUSION: The association between protein intake and bone strength varied by source of protein. These results support a link between dairy protein intake and skeletal health, but an intervention study is needed to evaluate causality.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas Alimentares/administração & dosagem , Rádio (Anatomia)/fisiologia , Tíbia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Estudos Transversais , Proteínas Alimentares/farmacologia , Comportamento Alimentar , Humanos , Masculino , Proteínas do Leite/administração & dosagem , Proteínas do Leite/farmacologia , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas de Vegetais Comestíveis/farmacologia , Tomografia Computadorizada por Raios X/métodos
2.
Calcif Tissue Int ; 89(2): 130-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21626160

RESUMO

A number of osteoporotic patients under bisphosphonate treatment present persistent fragility fractures and bone loss despite good compliance. The objective of this 18-month prospective study was to investigate the effect of teriparatide [rhPTH(1-34)] in 25 female osteoporotics who were inadequate responders to oral bisphosphonates and to correlate microarchitectural changes in three consecutive iliac crest biopsies measured by micro-computed tomography (µCT) with bone mineral density (BMD) and bone serum markers. Scanned biopsies at baseline (M0), 6 months (M6), and 18 months (M18) demonstrated early significant (P < 0.01) increases in bone volume per tissue volume (+34%) and trabecular number (+14%) at M6 with only moderate changes in most µCT structural parameters between M6 and M18. µCT-measured bone tissue density was significantly decreased at M18, expressing an overall lower degree of tissue mineralization characteristic for new bone formation despite unchanged trabecular thickness due to increased intratrabecular tunneling at M18. µCT results were consistent with serum bone turnover markers, reaching maximal levels of bone alkaline phosphatase and serum ß-crosslaps at M6, with subsequent decline until M18. BMD assessed by DXA demonstrated persistent increases at the lumbar spine until M12, whereas no significant change was observed at the hip. Type (alendronate/risedronate) and duration (3.5 ± 4 years) of prior bisphosphonate treatment did not influence outcome on µCT, BMD, or bone marker results. The overall results indicate a positive ceiling effect of teriparatide on bone microarchitecture and bone markers after 6 and 12 months for lumbar spine BMD, with no additional gain until M18 in bisphosphonate nonresponders.


Assuntos
Osso e Ossos/ultraestrutura , Difosfonatos/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Teriparatida/uso terapêutico , Idoso , Algoritmos , Biópsia , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/patologia , Fatores de Tempo , Resultado do Tratamento
3.
Med Phys ; 35(7): 3170-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18697542

RESUMO

Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SRmuCT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop muCT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional muCT. The goal of this study was to evaluate muCT-based measurement of degree and distribution of tissue mineralization in a quantitative, spatially resolved manner. Specifically, muCT measures of bone mineral content (BMC) and TMD were compared to those obtained by SRmuCT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n = 5), vertebrae (n = 5), and proximal tibiae (n = 4). Cylinders were imaged in saline on a polychromatic muCT system at an isotropic voxel size of 8 microm. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mg HA/cm3. SRmuCT imaging was performed at an isotropic voxel size of 7.50 microm at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density, muCT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p = 0.008) in high volume fraction specimens only, with the 1200 mg HA/cm3 correction resulting in a 4.7% higher TMD value. MuCT and SRmuCT provided significantly different measurements of both BMC and TMD (p < 0.05). In high volume fraction specimens, muCT with 1200 mg HA/cm3 correctionteg resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SRmuCT values. In low volume fraction specimens, muCT with 1200 mg HA/cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SRmuCT values. MuCT and SRmuCT values were well-correlated when volume fraction groups were considered individually (BMC R2 = 0.97-1.00; TMD R2 = 0.78-0.99). Ash mass and density were higher than the SRmuCT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p < 0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus muCT R2 = 0.96-1.00; ash versus SRmuCT R2 = 0.99-1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus muCT R2 = 0.64-0.72; ash versus SRmuCT R2 = 0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the muCT data, which were reduced (but not eliminated) using the 1200 mg HA/cm3 beam hardening correction, and did not exist in the SRmuCT data. This study represents the first quantitative comparison of muCT mineralization evaluation against SRnuCT and gravimetry. Our results indicate that muCT mineralization measures are underestimated but well-correlated with SRmuCT and gravimetric data, particularly when volume fraction groups are considered individually.


Assuntos
Osso e Ossos/patologia , Calcificação Fisiológica , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Densidade Óssea , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Intensificação de Imagem Radiográfica , Análise de Regressão , Reprodutibilidade dos Testes , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA