Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622380

RESUMO

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Epiteliais , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidases , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Adulto , Pessoa de Meia-Idade , Idoso , Células Epiteliais/virologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Mucosa Nasal/virologia , Criança , Fatores Etários , Replicação Viral , Pré-Escolar , Tropismo Viral , Masculino , Feminino , Idoso de 80 Anos ou mais , Células Cultivadas , Adolescente , Lactente
2.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818801

RESUMO

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Liberação de Vírus , Humanos , Antígeno 2 do Estroma da Médula Óssea/antagonistas & inibidores , Antígeno 2 do Estroma da Médula Óssea/metabolismo , COVID-19/virologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética
3.
Invest Ophthalmol Vis Sci ; 64(11): 10, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548963

RESUMO

Purpose: To model the in vivo effects of chloroquine on the retinal pigment epithelium in experimentally tractable cell culture systems and determine the effects of mild chloroquine treatment on lysosome function and turnover. Methods: Effects of low-dose chloroquine treatment on lysosomal function and accessibility to newly endocytosed cargo were investigated in primary and embryonic stem cell-derived RPE cells and ARPE19 cells using fluorescence and electron microscopy of fluorescent and gold-labeled probes. Lysosomal protein expression and accumulation were measured by quantitative PCR and Western blotting. Results: Initial chloroquine-induced lysosome neutralization was followed by partial recovery, lysosomal expansion, and accumulation of undegraded endocytic, phagocytic, and autophagic cargo and inhibition of cathepsin D processing. Accumulation of enlarged lysosomes was accompanied by a gradual loss of accessibility of these structures to the endocytic pathway, implying impaired lysosome reformation. Chloroquine-induced accumulation of pro-cathepsin D, as well as the lysosomal membrane protein, LAMP1, was reproduced by treatment with protease inhibitors and preceded changes in lysosomal gene expression. Conclusions: Low-dose chloroquine treatment inhibits lysosome reformation, causing a gradual depletion of lysosomes able to interact with cargo-carrying vacuoles and degrade their content. The resulting accumulation of newly synthesized pro-cathepsin D and LAMP1 reflects inhibition of normal turnover of lysosomal constituents and possibly lysosomes themselves. A better understanding of the mechanisms underlying lysosome reformation may reveal new targets for the treatment of chloroquine-induced retinopathy.


Assuntos
Cloroquina , Doenças Retinianas , Humanos , Cloroquina/toxicidade , Lisossomos/metabolismo , Fagocitose , Autofagia/fisiologia , Doenças Retinianas/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
4.
J Histochem Cytochem ; 71(6): 301-320, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350564

RESUMO

Retinal astrocytes are vital for neuronal homeostasis in the retina. Together with Müller glia, they provide retinal cells with neurotrophic factors, antioxidative support, and defense mechanisms such as the formation of the blood-retinal barrier. Substantial heterogeneity of astrocyte morphology and function represents a challenge for identification of distinct subtypes which may be potential targets for therapeutic purposes. Hence, identification of novel markers of astrocyte subpopulations is highly relevant to better understand the molecular mechanisms involved in retinal development, homeostasis, and pathology. In this study, we observed that the cell cycle regulator, p16INK4a, is expressed in immature astrocytes in the mouse retina. Immunohistochemical analysis showed p16INK4a expression in the optic nerve of wild-type mice from 3 days to 3 months of age and in the nerve fiber layer of the adult mouse retina. Colocalization of p16INK4a expression and glial fibrillary acidic protein (immature/mature astrocyte marker) tends to decrease with age. However, colocalization of p16INK4a expression and vimentin (immature astrocyte marker) remains high in the optic nerve from the early postnatal period to adulthood. The observations from this study provide a valuable tool for further investigations of ocular astrocytes in the developing retina as well as in degenerative retinopathies.


Assuntos
Astrócitos , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos , Animais , Astrócitos/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/análise , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neuroglia , Retina/metabolismo , Proteína Glial Fibrilar Ácida/análise , Ciclo Celular
5.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428971

RESUMO

Mitochondria are essential adenosine triphosphate (ATP)-generating cellular organelles. In the retina, they are highly numerous in the photoreceptors and retinal pigment epithelium (RPE) due to their high energetic requirements. Fission and fusion of the mitochondria within these cells allow them to adapt to changing demands over the lifespan of the organism. Using transmission electron microscopy, we examined the mitochondrial ultrastructure of zebrafish photoreceptors and RPE from 5 days post fertilisation (dpf) through to late adulthood (3 years). Notably, mitochondria in the youngest animals were large and irregular shaped with a loose cristae architecture, but by 8 dpf they had reduced in size and expanded in number with more defined cristae. Investigation of temporal gene expression of several mitochondrial-related markers indicated fission as the dominant mechanism contributing to the changes observed over time. This is likely to be due to continued mitochondrial stress resulting from the oxidative environment of the retina and prolonged light exposure. We have characterised retinal mitochondrial ageing in a key vertebrate model organism, that provides a basis for future studies of retinal diseases that are linked to mitochondrial dysfunction.


Assuntos
Epitélio Pigmentado da Retina , Peixe-Zebra , Animais , Epitélio Pigmentado da Retina/metabolismo , Tamanho Mitocondrial , Retina/fisiologia , Envelhecimento
6.
J Extracell Vesicles ; 10(6): 12084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33936566

RESUMO

Extracellular vesicles (EVs) are emerging as key players in different stages of atherosclerosis. Here we provide evidence that EVs released by mixed aggregates of monocytes and platelets in response to TNF-α display pro-inflammatory actions on endothelial cells and atherosclerotic plaques. Tempering platelet activation with Iloprost, Aspirin or a P2Y12 inhibitor impacted quantity and phenotype of EV produced. Proteomics of EVs from cells activated with TNF-α alone or in the presence of Iloprost revealed a distinct composition, with interesting hits like annexin-A1 and gelsolin. When added to human atherosclerotic plaque explants, EVs from TNF-α stimulated monocytes augmented release of cytokines. In contrast, EVs generated by TNF-α together with Iloprost produced minimal plaque activation. Notably, patients with coronary artery disease that required percutaneous coronary intervention had elevated plasma numbers of monocyte, platelet as well as double positive EV subsets. In conclusion, EVs released following monocyte/platelet activation may play a potential role in the development and progression of atherosclerosis. Whereas attenuating platelet activation modifies EV composition released from monocyte/platelet aggregates, curbing their pro-inflammatory actions may offer therapeutic avenues for the treatment of atherosclerosis.


Assuntos
Vesículas Extracelulares/fisiologia , Monócitos/fisiologia , Placa Aterosclerótica/fisiopatologia , Agregação Plaquetária/fisiologia , Aspirina/farmacologia , Aterosclerose/fisiopatologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Citocinas , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Monócitos/citologia , Ativação Plaquetária/efeitos dos fármacos , Fator de Necrose Tumoral alfa
7.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33712448

RESUMO

Many neuronal and retinal disorders are associated with pathological hyperpermeability of the microvasculature. We have used explants of rodent retinae to study acute neurovascular permeability, signal transduction and the role of AMP-activated protein kinase (AMPK). Following stimulation with either vascular endothelial growth factor (VEGF-A) or bradykinin (BK), AMPK was rapidly and strongly phosphorylated and acted as a key mediator of permeability downstream of Ca2+. Accordingly, AMPK agonists potently induced acute retinal vascular leakage. AMPK activation led to phosphorylation of endothelial nitric oxide synthase (eNOS, also known as NOS3), which in turn increased VE-cadherin (CDH5) phosphorylation on Y685. In parallel, AMPK also mediated phosphorylation of p38 MAP kinases (hereafter p38) and HSP27 (HSPB1), indicating that it regulated paracellular junctions and cellular contractility, both previously associated with endothelial permeability. Endothelial AMPK provided a missing link in neurovascular permeability, connecting Ca2+ transients to the activation of eNOS and p38, irrespective of the permeability-inducing factor used. Collectively, we find that, due to its compatibility with small molecule antagonists and agonists, as well as siRNA, the ex vivo retina model constitutes a reliable tool to identify and study regulators and mechanisms of acute neurovascular permeability.


Assuntos
Proteínas Quinases Ativadas por AMP , Fator A de Crescimento do Endotélio Vascular , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Permeabilidade , Fosforilação , Transdução de Sinais
8.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L1048-L1060, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996775

RESUMO

Primary ciliary dyskinesia (PCD) is an inherited disorder of the motile cilia. Early accurate diagnosis is important to help prevent lung damage in childhood and to preserve lung function. Confirmation of a diagnosis traditionally relied on assessment of ciliary ultrastructure by transmission electron microscopy (TEM); however, >50 known PCD genes have made the identification of biallelic mutations a viable alternative to confirm diagnosis. TEM and genotyping lack sensitivity, and research to improve accuracy of both is required. TEM can be challenging when a subtle or partial ciliary defect is present or affected cilia structures are difficult to identify due to poor contrast. Here, we demonstrate software to enhance TEM ciliary images and reduce background by averaging ciliary features. This includes an option to classify features into groups based on their appearance, to generate multiple averages when a nonhomogeneous abnormality is present. We validated this software on images taken from subjects with well-characterized PCD caused by variants in the outer dynein arm (ODA) heavy chain gene DNAH5. Examining more difficult to diagnose cases, we detected 1) regionally restricted absence of the ODAs away from the ciliary base, in a subject carrying mutations in DNAH9; 2) loss of the typically poorly contrasted inner dynein arms; and 3) sporadic absence of part of the central pair complex in subjects carrying mutations in HYDIN, including one case with an unverified genetic diagnosis. We show that this easy-to-use software can assist in detailing relationships between genotype and ultrastructural phenotype, improving diagnosis of PCD.


Assuntos
Cílios/genética , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/genética , Genótipo , Axonema/genética , Dineínas/genética , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutação/genética , Fenótipo
9.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674266

RESUMO

Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of 'Primary Cilia' (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiologia , Cílios/patologia , Cílios/fisiologia , Animais , Homeostase/fisiologia , Humanos , Mecanotransdução Celular/fisiologia , Morfogênese/fisiologia , Osteoartrite/patologia
10.
PLoS Biol ; 17(8): e3000097, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430273

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes (T2D) and obesity, undergoes rapid endocytosis after stimulation by endogenous and therapeutic agonists. We have previously highlighted the relevance of this process in fine-tuning GLP-1R responses in pancreatic beta cells to control insulin secretion. In the present study, we demonstrate an important role for the translocation of active GLP-1Rs into liquid-ordered plasma membrane nanodomains, which act as hotspots for optimal coordination of intracellular signaling and clathrin-mediated endocytosis. This process is dynamically regulated by agonist binding through palmitoylation of the GLP-1R at its carboxyl-terminal tail. Biased GLP-1R agonists and small molecule allosteric modulation both influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Análise por Conglomerados , Cricetulus , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2 , Endocitose/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Lipoilação , Transdução de Sinais/efeitos dos fármacos
11.
Am J Hum Genet ; 103(6): 984-994, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471717

RESUMO

Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.


Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Situs Inversus/genética , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Transtornos da Motilidade Ciliar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Sistema Respiratório/patologia , Alinhamento de Sequência
12.
Cell Rep ; 24(3): 630-641, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021161

RESUMO

The immunosuppressive transmembrane protein PD-L1 was shown to traffic via the multivesicular body (MVB) and to be released on exosomes. A high-content siRNA screen identified the endosomal sorting complexes required for transport (ESCRT)-associated protein ALIX as a regulator of both EGFR activity and PD-L1 surface presentation in basal-like breast cancer (BLBC) cells. ALIX depletion results in prolonged and enhanced stimulation-induced EGFR activity as well as defective PD-L1 trafficking through the MVB, reduced exosomal secretion, and its redistribution to the cell surface. Increased surface PD-L1 expression confers an EGFR-dependent immunosuppressive phenotype on ALIX-depleted cells. An inverse association between ALIX and PD-L1 expression was observed in human breast cancer tissues, while an immunocompetent mouse model of breast cancer revealed that ALIX-deficient tumors are larger and show an increased immunosuppressive environment. Our data suggest that ALIX modulates immunosuppression through regulation of PD-L1 and EGFR and may, therefore, present a diagnostic and therapeutic target for BLBC.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Terapia de Imunossupressão , Animais , Técnicas Biossensoriais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos Endogâmicos BALB C
13.
Cell Rep ; 23(10): 3042-3055, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874589

RESUMO

Primary cilia are microtubule-based organelles that detect mechanical and chemical stimuli. Although cilia house a number of oncogenic molecules (including Smoothened, KRAS, EGFR, and PDGFR), their precise role in cancer remains unclear. We have interrogated the role of cilia in acquired and de novo resistance to a variety of kinase inhibitors, and found that, in several examples, resistant cells are distinctly characterized by an increase in the number and/or length of cilia with altered structural features. Changes in ciliation seem to be linked to differences in the molecular composition of cilia and result in enhanced Hedgehog pathway activation. Notably, manipulating cilia length via Kif7 knockdown is sufficient to confer drug resistance in drug-sensitive cells. Conversely, targeting of cilia length or integrity through genetic and pharmacological approaches overcomes kinase inhibitor resistance. Our work establishes a role for ciliogenesis and cilia length in promoting cancer drug resistance and has significant translational implications.


Assuntos
Cílios/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Cílios/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Modelos Biológicos , Organogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
J Immunol ; 198(10): 4074-4085, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28373581

RESUMO

Lymphocyte transendothelial migration (TEM) is critically dependent on intraendothelial signaling triggered by adhesion to ICAM-1. Here we show that endothelial MAPKs ERK, p38, and JNK mediate diapedesis-related and diapedesis-unrelated functions of ICAM-1 in cerebral and dermal microvascular endothelial cells (MVECs). All three MAPKs were activated by ICAM-1 engagement, either through lymphocyte adhesion or Ab-mediated clustering. MAPKs were involved in ICAM-1-dependent expression of TNF-α in cerebral and dermal MVECs, and CXCL8, CCL3, CCL4, VCAM-1, and cyclooxygenase 2 (COX-2) in cerebral MVECs. Endothelial JNK and to a much lesser degree p38 were the principal MAPKs involved in facilitating diapedesis of CD4+ lymphocytes across both types of MVECs, whereas ERK was additionally required for TEM across dermal MVECs. JNK activity was critical for ICAM-1-induced F-actin rearrangements. Furthermore, activation of endothelial ICAM-1/JNK led to phosphorylation of paxillin, its association with VE-cadherin, and internalization of the latter. Importantly ICAM-1-induced phosphorylation of paxillin was required for lymphocyte TEM and converged functionally with VE-cadherin phosphorylation. Taken together we conclude that during lymphocyte TEM, ICAM-1 signaling diverges into pathways regulating lymphocyte diapedesis, and other pathways modulating gene expression thereby contributing to the long-term inflammatory response of the endothelium.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Encéfalo/irrigação sanguínea , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Movimento Celular , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL4/genética , Quimiocina CCL4/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Derme/irrigação sanguínea , Células Endoteliais/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Ativação Enzimática , Humanos , Inflamação/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Sistema de Sinalização das MAP Quinases , Microvasos , Paxilina/metabolismo , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
15.
ACS Nano ; 11(1): 249-257, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27768850

RESUMO

Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intracluster distances (d). From these data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P < 0.001). For comparison, the prediction accuracy was only 61% (P = 0.382) when the diffraction-limited averaged fluorescence intensity/cluster was used. Large clusters (N ≥ 3) with d > 50 nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d < 50 nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Modelos Lineares , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/química , Sondas Moleculares , Pontos Quânticos/química
17.
BMC Complement Altern Med ; 15: 264, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243305

RESUMO

BACKGROUND: Arum palaestinum is a plant commonly found in the Middle East that is ingested as an herbal remedy to fight cancer. However, no studies have examined the direct effect of the plant/plant extract on tumor growth in an animal model. METHODS: Verified prostate cancer cells were plated as 3D spheroids to determine the effect of extract from boiled Arum Palaestinum Boiss roots. In addition, male NU/NU mice (8 weeks old) with xenograft tumors derived from the prostate cancer cell line were treated daily with 1000 mg/kg body weight gavage of the suspension GZ17. The tumor growth was measured repeatedly with calipers and the excised tumors were weighed at the termination of the 3 week study. Control mice (10 mice in each group) received vehicle in the same manner and volume. RESULTS: The number of live prostate cancer cells declined in a dose/dependent manner with a 24 h exposure to the extract at doses of 0.015 to 6.25 mg/mL. A fortified version of the extract (referred to as GZ17) that contained higher levels of isovanillin, linolenic acid and ß-sitosterol had a stronger effect on the cell death rate, shifting the percentage of dead cells from 30 % to 55 % at the highest dose while the vehicle control had no effect on cell numbers. When GZ17 was applied to non-cancer tissue, in this case, human islets, there was no cell death at doses that were toxic to treated cancer cells. Preliminary toxicity studies were conducted on rats using an up-down design, with no signs of toxic effect at the highest dose. NU/NU mice with xenograft prostate tumors treated with GZ17 had a dramatic inhibition of tumor progression, while tumors in the control group grew steadily through the 3 weeks. The rate of tumor volume increase was 73 mm(3)/day for the vehicle group and 24 mm(3)/day for the GZ17 treated mice. While there was a trend towards lower excised tumor weight at study termination in the GZ17 treatment group, there was no statistical difference. CONCLUSIONS: Fortified Arum palaestinum Boiss caused a reduction in live cells within prostate cancer spheroids and blocked tumor growth in xenografted prostate tumors in mice without signs of toxicity.


Assuntos
Antineoplásicos , Arum/química , Benzaldeídos , Extratos Vegetais , Neoplasias da Próstata , Sitosteroides , Ácido alfa-Linolênico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzaldeídos/química , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Ratos , Sitosteroides/química , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/uso terapêutico
18.
Nat Commun ; 6: 7324, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26066081

RESUMO

Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Transcrição/metabolismo , Células HeLa , Humanos , Estresse Oxidativo , Transporte Proteico , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Dev Cell ; 30(5): 541-52, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25175707

RESUMO

The vascular endothelium operates in a highly polarized environment, but to date there has been little exploration of apicobasal polarization of its signaling. We show that VEGF-A, histamine, IGFBP3, and LPA trigger unequal endothelial responses when acting from the circulation or the parenchymal side at blood-neural barriers. For VEGF-A, highly polarized receptor distribution contributed to distinct signaling patterns: VEGFR2, which was found to be predominantly abluminal, mediated increased permeability via p38; in contrast, luminal VEGFR1 led to Akt activation and facilitated cytoprotection. Importantly, such differential apicobasal signaling and VEGFR distribution were found in the microvasculature of brain and retina but not lung, indicating that endothelial cells at blood-neural barriers possess specialized signaling compartments that assign different functions depending on whether an agonist is tissue or blood borne.


Assuntos
Barreira Hematoencefálica/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Endotélio Vascular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Permeabilidade , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Cell Sci ; 126(Pt 22): 5143-52, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24006264

RESUMO

Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation, and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as GPR143), which is expressed exclusively in pigmented cells and mutations in which cause the most common type of ocular albinism. When exogenously expressing PMEL, HeLa cells have been shown to form MVBs resembling early stage melanosomes. To focus on the role of OA1 in the initial stages of melanosome biogenesis we take advantage of the absence of the later stages of melanosome maturation in HeLa cells to determine whether OA1 activity can regulate MVB number and fate. Expression of wild-type but not OA1 mutants carrying inactivating mutations or deletions causes MVB numbers to increase. Whereas OA1 expression has no effect on delivery of EGFR-containing MVBs to the lysosome, it inhibits the lysosomal delivery of PMEL and PMEL-containing MVBs accumulate. We propose that OA1 activity delays delivery of PMEL-containing MVBs to the lysosome to allow time for melanin synthesis and commitment to melanosome biogenesis.


Assuntos
Proteínas do Olho/biossíntese , Lisossomos/metabolismo , Melanossomas/metabolismo , Glicoproteínas de Membrana/biossíntese , Corpos Multivesiculares/metabolismo , Endossomos/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Lisossomos/genética , Melanossomas/genética , Glicoproteínas de Membrana/genética , Corpos Multivesiculares/genética , Mutação , Antígeno gp100 de Melanoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA