Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686232

RESUMO

Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.


Assuntos
Artemisia , Calcinose , Resistência à Insulina , Corantes , Osteoblastos , Proliferação de Células , Extratos Vegetais/farmacologia
2.
Biol Sex Differ ; 10(1): 19, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987673

RESUMO

BACKGROUND: The obesity-related risk of developing metabolic syndrome is higher in males than in females of reproductive age, likely due to estrogen-mediated reduced adipose tissue inflammation and fibrosis with hypertrophied adipocytes. Depletion of the ubiquitin ligase Siah2 reduced white adipose tissue inflammation and improved glucose metabolism in obese male mice. Siah2 is a transcriptional target of estrogen, but data is lacking about the effect of Siah2 on adipose tissue of females. We therefore evaluated the impact of Siah2 deficiency on white and brown adipose tissue in females of reproductive age. METHODS: Body composition, adipose tissue morphology, brown adipose tissue gene, and protein expression and adipocyte sizing were evaluated in wild-type and Siah2KO female and male mice fed a low-fat or high-fat diet. Glucose and insulin tolerance, fasting glucose, insulin, fatty acids and triglycerides, and gene expression of inflammation markers in perigonadal fat were evaluated in wild-type and Siah2KO female mice. Microarray analysis of brown fat gene expression was carried out in both sexes. Statistical analysis was assessed by unpaired two-tailed t test and repeated measures ANOVA. RESULTS: Siah2 deficiency improves glucose and insulin tolerance in the presence of hypertrophied white adipocytes in high-fat-fed female mice with percent fat comparable to male mice. While previous studies showed Siah2KO reduces the white adipose tissue inflammatory response in male mice, the response in females is biased toward the upregulation of M2-like markers in white adipose tissue. In contrast, loss of Siah2 leads to increased whitening of brown fat in males, but not in females. This corresponded to increased expression of markers of inflammation (F4/80, Ccl2) and thermogenic genes (Pgc1alpha, Dio2, Ucp-1) and proteins (PGC-1α, UCP-1) in females. Contrary to expectations, increased expression of thermogenic markers in females was coupled with a downregulation of ERalpha and ERRgamma protein levels. CONCLUSIONS: The most striking sex-related effect of Siah2 deficiency is reduced whitening of brown fat in high-fat-fed females. Protection from accumulating unilocular adipocytes in the brown fat corresponds to increased expression of thermogenic genes and proteins in female, but not in male mice. These results raise the possibility that Siah2 contributes to the estrogen-related effects on brown fat function in males and females.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Caracteres Sexuais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Receptor alfa de Estrogênio/metabolismo , Feminino , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Mol Metab ; 14: 95-107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29914854

RESUMO

OBJECTIVE: Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet ß-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1ß, suggesting that signaling through this pathway regulates health and function of islet ß-cells. METHODS: Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1-/-) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, ß-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. RESULTS: Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1-/- with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1-/- mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1-/- relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1-/- mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1-/- mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the ß-cell transcription factor MafA. Nkx6.1 abundance was unaltered. CONCLUSIONS: There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo.


Assuntos
Diferenciação Celular , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Tipo I de Interleucina-1/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase , Resistência à Insulina , Células Secretoras de Insulina/citologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
4.
Biochim Biophys Acta ; 1849(6): 637-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25882704

RESUMO

Enhanced leukocytic infiltration into pancreatic islets contributes to inflammation-based diminutions in functional ß-cell mass. Insulitis (aka islet inflammation), which can be present in both T1DM and T2DM, is one factor influencing pancreatic ß-cell death and dysfunction. IL-1ß, an inflammatory mediator in both T1DM and T2DM, acutely (within 1h) induced expression of the CCL20 gene in rat and human islets and clonal ß-cell lines. Transcriptional induction of CCL20 required the p65 subunit of NF-κB to replace the p50 subunit at two functional κB sites within the CCL20 proximal gene promoter. The NF-κB p50 subunit prevents CCL20 gene expression during unstimulated conditions and overexpression of p50 reduces CCL20, but enhances cyclooxygenase-2 (COX-2), transcript accumulation after exposure to IL-1ß. We also identified differential recruitment of specific co-activator molecules to the CCL20 gene promoter, when compared with the CCL2 and COX2 genes, revealing distinct transcriptional requirements for individual NF-κB responsive genes. Moreover, IL-1ß, TNF-α and IFN-γ individually increased the expression of CCR6, the receptor for CCL20, on the surface of human neutrophils. We further found that the chemokine CCL20 is elevated in serum from both genetically obese db/db mice and in C57BL6/J mice fed a high-fat diet. Taken together, these results are consistent with a possible activation of the CCL20-CCR6 axis in diseases with inflammatory components. Thus, interfering with this signaling pathway, either at the level of NF-κB-mediated chemokine production, or downstream receptor activation, could be a potential therapeutic target to offset inflammation-associated tissue dysfunction in obesity and diabetes.


Assuntos
Quimiocina CCL20/genética , Diabetes Mellitus/genética , Inflamação/genética , Obesidade/genética , Fator de Transcrição RelA/genética , Animais , Quimiocina CCL20/biossíntese , Quimiocina CCL20/metabolismo , Diabetes Mellitus/patologia , Humanos , Imunidade Inata/genética , Inflamação/patologia , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Obesos , NF-kappa B/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Receptores CCR6/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/metabolismo
5.
Eur J Endocrinol ; 172(1): 47-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342854

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is associated with reduced adipose tissue lipolysis that can be rescued by aerobic exercise. We aimed to identify differences in the gene expression of perilipins and associated targets in adipose tissue in women with PCOS before and after exercise. DESIGN AND METHODS: We conducted a cross-sectional study in eight women with PCOS and eight women matched for BMI and age with normal cycles. Women with PCOS also completed a 16-week prospective aerobic exercise-training study. Abdominal subcutaneous adipose tissue biopsies were collected, and primary adipose-derived stromal/stem cell cultures were established from women with PCOS before 16 weeks of aerobic exercise training (n=5) and controls (n=5). Gene expression was measured using real-time PCR, in vitro lipolysis was measured using radiolabeled oleate, and perilipin 3 (PLIN3) protein content was measured by western blotting analysis. RESULTS: The expression of PLIN1, PLIN3, and PLIN5, along with coatomers ARF1, ARFRP1, and ßCOP was ∼ 80% lower in women with PCOS (all P<0.05). Following exercise training, PLIN3 was the only perilipin to increase significantly (P<0.05), along with coatomers ARF1, ARFRP1, ßCOP, and SEC23A (all P<0.05). Furthermore, PLIN3 protein expression was undetectable in the cell cultures from women with PCOS vs controls. Following exercise training, in vitro adipose oleate oxidation, glycerol secretion, and PLIN3 protein expression were increased, along with reductions in triglyceride content and absence of large lipid droplet morphology. CONCLUSIONS: These findings suggest that PLIN3 and coatomer GTPases are important regulators of lipolysis and triglyceride storage in the adipose tissue of women with PCOS.


Assuntos
Tecido Adiposo/metabolismo , Exercício Físico/fisiologia , Regulação da Expressão Gênica , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Proteínas de Transporte Vesicular/biossíntese , Adulto , Estudos Transversais , Feminino , Humanos , Perilipina-3 , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
6.
Am J Physiol Endocrinol Metab ; 306(3): E233-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302007

RESUMO

The extracellular matrix (ECM) plays an important role in the maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accommodate changes in energy storage needs. Obesity and adipocyte hypertrophy place a strain on the ECM remodeling machinery, which may promote disordered ECM and altered tissue integrity and could promote proinflammatory and cell stress signals. To explore these questions, new methods were developed to quantify omental and subcutaneous WAT tensile strength and WAT collagen content by three-dimensional confocal imaging, using collagen VI knockout mice as a methods validation tool. These methods, combined with comprehensive measurement of WAT ECM proteolytic enzymes, transcript, and blood analyte analyses, were used to identify unique pathophenotypes of metabolic syndrome and type 2 diabetes mellitus in obese women, using multivariate statistical modeling and univariate comparisons with weight-matched healthy obese individuals. In addition to the expected differences in inflammation and glycemic control, approximately 20 ECM-related factors, including omental tensile strength, collagen, and enzyme transcripts, helped discriminate metabolically compromised obesity. This is consistent with the hypothesis that WAT ECM physiology is intimately linked to metabolic health in obese humans, and the studies provide new tools to explore this relationship.


Assuntos
Tecido Adiposo Branco/ultraestrutura , Obesidade/patologia , Obesidade/fisiopatologia , Resistência à Tração , Adulto , Animais , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Feminino , Nível de Saúde , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Adulto Jovem
7.
J Am Chem Soc ; 135(1): 309-14, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23198810

RESUMO

Achieving the vision of identifying and quantifying cancer-related events and targets for future personalized oncology is predicated on the existence of synthetically accessible and economically viable probe molecules fully able to report the presence of these events and targets in a rapid and highly selective and sensitive fashion. Delineated here are the design and evaluation of a newly synthesized turn-on probe whose intense fluorescent reporter signature is revealed only through probe activation by a specific intracellular enzyme present in tumor cells of multiple origins. Quenching of molecular probe fluorescence is achieved through unique photoinduced electron transfer between the naphthalimide dye reporter and a covalently attached, quinone-based enzyme substrate. Fluorescence of the reporter dye is turned on by rapid removal of the quinone quencher, an event that immediately occurs only after highly selective, two-electron reduction of the sterically and conformationally restricted quinone substrate by the cancer-associated human NAD(P)H:quinone oxidoreductase isozyme 1 (hNQO1). Successes of the approach include rapid differentiation of NQO1-expressing and -nonexpressing cancer cell lines via the unaided eye, flow cytometry, fluorescence imaging, and two-photon microscopy. The potential for use of the turn-on probe in longer-term cellular studies is indicated by its lack of influence on cell viability and its in vitro stability.


Assuntos
Corantes Fluorescentes/química , NAD(P)H Desidrogenase (Quinona)/biossíntese , Neoplasias/metabolismo , Quinonas/química , Diferenciação Celular , Sobrevivência Celular , Fluorescência , Corantes Fluorescentes/metabolismo , Células HT29 , Humanos , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias/patologia , Quinonas/metabolismo , Células Tumorais Cultivadas
8.
Plant Cell ; 17(5): 1449-66, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15805481

RESUMO

SAC (for suppressor of actin) domain proteins in yeast and animals have been shown to modulate the levels of phosphoinositides, thereby regulating several cellular activities such as signal transduction, actin cytoskeleton organization, and vesicle trafficking. Nine genes encoding SAC domain-containing proteins are present in the Arabidopsis thaliana genome, but their roles in plant cellular functions and plant growth and development have not been characterized. In this report, we demonstrate the essential roles of one of the Arabidopsis SAC domain proteins, AtSAC1, in plant cellular functions. Mutation of the AtSAC1 gene in the fragile fiber7 (fra7) mutant caused a dramatic decrease in the wall thickness of fiber cells and vessel elements, thus resulting in a weak stem phenotype. The fra7 mutation also led to reduced length and aberrant shapes in fiber cells, pith cells, and trichomes and to an alteration in overall plant architecture. The AtSAC1 gene was found to be expressed in all tissues in elongating organs; however, it showed predominant expression in vascular tissues and fibers in nonelongating parts of stems. In vitro activity assay demonstrated that AtSAC1 exhibited phosphatase activity toward phosphatidylinositol 3,5-biphosphate. Subcellular localization studies showed that AtSAC1 was colocalized with a Golgi marker. Truncation of the C terminus by the fra7 mutation resulted in its localization in the cytoplasm but had no effect on phosphatase activity. Furthermore, examination of the cytoskeleton organization revealed that the fra7 mutation caused the formation of aberrant actin cables in elongating cells but had no effect on the organization of cortical microtubules. Together, these results provide genetic evidence that AtSAC1, a SAC domain phosphoinositide phosphatase, is required for normal cell morphogenesis, cell wall synthesis, and actin organization.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular/genética , Parede Celular/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Complexo de Golgi/enzimologia , Dados de Sequência Molecular , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos
9.
J Cell Biochem ; 94(5): 944-53, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15578567

RESUMO

Protein tyrosine phosphatase SHP-1 plays a critical role in the regulation of a variety of intracellular signaling pathways. SHP-1 is predominantly expressed in the cells of hematopoietic origin, and is recognized as a negative regulator of lymphocyte development and activation. SHP-1 consists of two Src homology 2 (SH2) domains and one protein tyrosine phosphatase (PTP) domain followed by a highly basic C-terminal tail containing tyrosyl phosphorylation sites. It is unclear how the C-terminal tail regulates SHP-1 function. We report the examination of the subcellular localization of a variety of truncated or mutated SHP-1 proteins fused with enhanced green fluorescent protein (EGFP) protein at either the N-terminal or the C-terminal end in different cell lines. Our data demonstrate that a nuclear localization signal (NLS) is located in the C-terminal tail of SHP-1 and the signal is primarily defined by three amino-acid residues (KRK) at the C-terminus. This signal is generally blocked in the native protein and can be exposed by fusing EGFP at the appropriate position or by domain truncation. We have also revealed that this NLS of SHP-1 is triggered by epidermal growth factor (EGF) stimulation and mediates translocation of SHP-1 from the cytosol to the nucleus in COS7 cell lines. These results not only demonstrate the importance of the C-terminal tail of SHP-1 in the regulation of nuclear localization, but also provide insights into its role in SHP-1-involved signal transduction pathways.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Sinais de Localização Nuclear/efeitos dos fármacos , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Eletrônica , Dados de Sequência Molecular , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/química , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
10.
Plant Cell ; 16(12): 3242-59, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15539468

RESUMO

Type II inositol polyphosphate 5-phosphatases (5PTases) in yeast and animals have been known to regulate the level of phosphoinositides and thereby influence various cellular activities, such as vesicle trafficking and actin organization. In plants, little is known about the phosphatases involved in hydrolysis of phosphoinositides, and roles of type II 5PTases in plant cellular functions have not yet been characterized. In this study, we demonstrate that the FRAGILE FIBER3 (FRA3) gene of Arabidopsis thaliana, which encodes a type II 5PTase, plays an essential role in the secondary wall synthesis in fiber cells and xylem vessels. The fra3 mutations caused a dramatic reduction in secondary wall thickness and a concomitant decrease in stem strength. These phenotypes were associated with an alteration in actin organization in fiber cells. Consistent with the defective fiber and vessel phenotypes, the FRA3 gene was found to be highly expressed in fiber cells and vascular tissues in stems. The FRA3 protein is composed of two domains, an N-terminal localized WD-repeat domain and a C-terminal localized 5PTase catalytic domain. In vitro activity assay demonstrated that recombinant FRA3 exhibited phosphatase activity toward PtdIns(4,5)P2, PtdIns(3,4,5)P3, and Ins(1,4,5)P3, with the highest substrate affinity toward PtdIns(4,5)P2. The fra3 missense mutation, which caused an amino acid substitution in the conserved motif II of the 5PTase catalytic domain, completely abolished the FRA3 phosphatase activity. Moreover, the endogenous levels of PtdIns(4,5)2 and Ins(1,4,5)P3 were found to be elevated in fra3 stems. Together, our findings suggest that the FRA3 type II 5PTase is involved in phosphoinositide metabolism and influences secondary wall synthesis and actin organization.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Parede Celular/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Sequência de Bases , Parede Celular/ultraestrutura , DNA Complementar/análise , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Inositol Polifosfato 5-Fosfatases , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Caules de Planta/citologia , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Estrutura Terciária de Proteína/genética , Regulação para Cima/genética
11.
Plant Cell ; 14(9): 2145-60, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12215512

RESUMO

It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.


Assuntos
Adenosina Trifosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Celulose/metabolismo , Microfibrilas/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/química , Arabidopsis/genética , Divisão Celular/fisiologia , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/química , Regulação da Expressão Gênica de Plantas , Hipocótilo/química , Hipocótilo/citologia , Hipocótilo/crescimento & desenvolvimento , Katanina , Microfibrilas/química , Microfibrilas/ultraestrutura , Microscopia Eletrônica , Mutação , Folhas de Planta/química , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA