Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 730545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566993

RESUMO

The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous ß2-microglobulin (ß2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.


Assuntos
Fibroblastos/metabolismo , Galactosiltransferases/deficiência , Antígenos HLA-G/metabolismo , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Animais , Animais Geneticamente Modificados , Linfócitos B/imunologia , Linfócitos B/metabolismo , Glicemia/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/imunologia , Galactosiltransferases/genética , Genótipo , Antígenos HLA-G/imunologia , Haplorrinos , Humanos , Interferon gama/metabolismo , Transplante das Ilhotas Pancreáticas , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Nus , Fenótipo , Sus scrofa , Linfócitos T/imunologia , Doadores de Tecidos , Transplante Heterólogo
2.
Ann Surg ; 274(3): 473-480, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34238812

RESUMO

OBJECTIVE: Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS: Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS: Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION: Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacologia , Transplante de Rim , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Antibioticoprofilaxia , Tolerância Imunológica , Macaca mulatta , Modelos Animais , Rituximab/farmacologia , Suínos , Tacrolimo/farmacologia
3.
Surg Open Sci ; 4: 26-31, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33937740

RESUMO

BACKGROUND: Genetically engineered porcine donors are a potential solution for the shortage of human organs for transplantation. Incompatibilities between humans and porcine donors are largely due to carbohydrate xenoantigens on the surface of porcine cells, provoking an immune response which leads to xenograft rejection. MATERIALS AND METHODS: Multiplex genetic knockout of GGTA1, ß4GalNT2, and CMAH is predicted to increase the rate of xenograft survival, as described previously for GGTA1. In this study, the clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 system was used to target genes relevant to xenotransplantation, and a method for highly efficient editing of multiple genes in primary porcine fibroblasts was described. RESULTS: Editing efficiencies greater than 85% were achieved for knockout of GGTA1, ß4GalNT2, and CMAH. CONCLUSION: The high-efficiency protocol presented here reduces scale and cost while accelerating the production of genetically engineered primary porcine fibroblast cells for in vitro studies and the production of animal models.

5.
Xenotransplantation ; 27(2): e12570, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984530

RESUMO

BACKGROUND: Xenotransplantation of porcine islets has emerged in recent decades as a potential treatment for type 1 diabetes (T1D). Current methods of detection, indicative of successful engraftment, occur downstream of actual islet death. Epigenetic biomarkers can be detected in circulating cell-free DNA (cfDNA) to provide an earlier indication of graft dysfunction. AIMS: The present study identified a biomarker of islet death using differential methylation of the insulin gene, INS, originating from ß-cells in porcine islets. MATERIALS & METHODS: Pyrosequencing primers specific for porcine INS were designed to quantify hypomethylation along 12 cysteine-guanine dinucleotide (CpG) sites, including three sites in the cyclic adenosine monophosphate (cAMP) response element (CRE) binding protein 2 (CRE2) binding region of the 5' untranslated region (UTR) and nine sites within intron 2. RESULTS: PCR amplification of bisulfite-converted DNA combined with pyrosequencing data support the conclusion that hypomethylated porcine INS is specific to islet origin. CONCLUSION: Moreover, the results of this study indicate a highly specific epigenetic biomarker, capable of detecting a single islet, supporting the measurement of cfDNA as a biomarker for transplanted islet death. Defining the epigenetic characteristics of porcine-derived islets within cfDNA will be crucial to develop a better understanding of graft survival immunology for transplantation.


Assuntos
Epigênese Genética/genética , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Transplante Heterólogo , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Sobrevivência de Enxerto/fisiologia , Xenoenxertos/imunologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Suínos , Transplante Heterólogo/métodos
6.
Xenotransplantation ; 27(1): e12582, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31984549

RESUMO

The ever-increasing disparity between the lack of organ donors and patients on the transplant waiting list is increasing worldwide. For the past several decades xenotransplantation has led the way to correct this deficit and remains clearly the only feasible option to provide a means to meet the demand for patients in need of an organ transplant. Xenotransplantation's ability to provide a specifically designed unlimited supply of organs, suited to treat the various needs for transplant organs and cells, has recently been championed by successful pre-clinical trials that have run long-term in non-human primate studies. In this review we show how these improvements have come about due to long-term dedicated research and recent advances in biomedical engineering technology, such as genome editing tools including zinc finger nucleases, TALEN, and CRISPER/Cas9 which have paved the way for significant breakthroughs in improving xenograft outcomes through genetic modifications to the donor source pig. Other novel approaches include the development of decellularized porcine tissue, such as corneas which can now be transplanted into patients with the minimal need for immunosuppression or other side effects. Further genetic variants of the porcine genome are also now being optimized to abrogate rejection. The emergence of new modalities such as; mesenchymal stem cells, donor thymic vascularization, in vivo bioreactors, chemokine and cytokine therapies have come to show improvements in xenograft outcomes. Furthermore, new studies confirm the safety status of using porcine xenografts, verifying that with current technologies and approaches, the issue of PERV transmission is a moot point. These breakthroughs and technological advancements push the reality of xenotransplantation one step closer to the clinic.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Transplante Heterólogo/métodos , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas do Sistema Complemento/metabolismo , Humanos , Tolerância Imunológica , Transplante de Órgãos , Primatas , Suínos
8.
Nat Commun ; 10(1): 3495, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375697

RESUMO

Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica , Transplante das Ilhotas Pancreáticas/efeitos adversos , Linfócitos T Reguladores/transplante , Transferência Adotiva , Aloenxertos/imunologia , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/imunologia , Humanos , Imunossupressores/uso terapêutico , Ilhotas Pancreáticas/imunologia , Macaca mulatta , Masculino , Linfócitos T Reguladores/imunologia , Doadores de Tecidos , Transplante Homólogo/efeitos adversos
10.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482083

RESUMO

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Assuntos
Caspase 1/genética , Inflamassomos/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Agregados Proteicos/genética , alfa-Sinucleína/genética , Compostos de Alúmen/farmacologia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/patologia , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nigericina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vitamina K 3/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacologia
13.
Cytokine ; 70(2): 165-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138015

RESUMO

Kupffer cells (KC) play a critical role in both liver physiology and the pathogenesis of various liver diseases. Isolated primary KC have a limited lifespan in culture, and due to the relatively low number obtained, limit their study in vitro. Here, a cytokine-producing immortalized KC (ImKC) line was established from transgenic mice that express the thermolabile mutant tsA58 of the Simian virus 40 large T antigen under the control of the H-2k(b) promoter. Primary KC were obtained using a three step procedure: liver perfusion, centrifugal elutriation, and sorting for F4/80⁺ cells. ImKC were identified within the small-intermediate population of KC that maintained stable expression of F4/80, and the surface antigens CD11b, CD14 and TLR4. ImKC grow at IFNγ-independent manner at 37°C and exhibited a doubling time of ∼24 h when cultured in RPMI 1640 with 5% FBS. Our observations indicate that both activation of telomerase and expression of P53 are markedly increased, suggesting that enhanced telomerase activity and P53 expression may contribute to the immortalization of this cell population. ImKC cells maintained a high capacity to phagocytose FITC-latex beads, and bind/phagocytose erythrocytes. In addition, similar to primary KC, ImKC responded to stimulation with lipopolysaccharide (LPS: 0.1-1µg/ml) by upregulating mRNA levels of TNFα (23-fold), IL-6 (28-fold), and IL-1ß (1459-fold), as measured by qRT-PCR. Protein levels of TNFα and IL-6 were also increased, 10-fold and 12-fold, respectively. Reactive oxygen species (ROS) and nitric oxide (NO) production were significantly enhanced in ImKC following an LPS challenge. Furthermore, LPS elicited a marked increase in mitogen activated protein kinase (MAPK) phospho-(ERK1/2, JNK) and NF-κB p50 with decreased IκBα in ImKC, as assessed by Western blot. Collectively, these results demonstrate that the ImKC line retains critical characteristics of primary KC, and thus provides a useful tool to assess the role of KC in liver injury and chronic diseases.


Assuntos
Citocinas/biossíntese , Células de Kupffer/citologia , Animais , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Separação Celular , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microesferas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Fagocitose/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Telomerase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(30): 11007-12, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024216

RESUMO

Pharmacological chaperones are small molecules that bind to proteins and stabilize them against thermal denaturation or proteolytic degradation, as well as assist or prevent certain protein-protein assemblies. These activities are being exploited for the development of treatments for diseases caused by protein instability and/or aberrant protein-protein interactions, such as those found in certain forms of cancers and neurodegenerative diseases. However, designing or discovering pharmacological chaperones for specific targets is challenging because of the relatively featureless protein target surfaces, the lack of suitable chemical libraries, and the shortage of efficient high-throughput screening methods. In this study, we attempted to address all these challenges by synthesizing a diverse library of small molecules that mimic protein α-helical secondary structures commonly found in protein-protein interaction surfaces. This was accompanied by establishing a facile "on-bead" high-throughput screening method that allows for rapid and efficient discovery of potential pharmacological chaperones and for identifying novel chaperones/inhibitors against a cancer-associated protein, myeloid cell leukemia 1 (MCL-1), and a Parkinson disease-associated protein, α-synuclein. Our data suggest that the compounds and methods described here will be useful tools for the development of pharmaceuticals for complex-disease targets that are traditionally deemed "undruggable."


Assuntos
Descoberta de Drogas , Chaperonas Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias , Doença de Parkinson , alfa-Sinucleína , Humanos , Células Jurkat , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/química , Chaperonas Moleculares/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo
15.
J Surg Res ; 181(1): e39-45, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22795272

RESUMO

BACKGROUND: Genetic modification of the pig has been hampered by inefficiency of homologous recombination and unavailability of pig embryonic stem cells. Engineered zinc finger nuclease (ZFN)-mediated genetic modification in somatic cells combined with somatic cell nuclear transfer (SCNT) technology provides a new approach for targeted modification in pig genome. In this study, we used a ZFN pair to disrupt porcine α-1,3, galactosyltransferase (GGTA1) gene in liver-derived cells (LDC). ZFN-treated LDC were used as nuclear donors to produce fetuses and piglets via SCNT. All cloned fetuses and piglets showed biallelic knockout of GGTA1 gene. MATERIALS AND METHODS: A ZFN pair was designed to target exon 8 of pig GGTA1 gene. LDC were transfected with GGTA1 ZFN plasmids. SURVEYOR assay was used to evaluate the ZFN activity in LDC. GGTA1 gene knockout cells (GTKO) were obtained by counter-selection and used as nuclear donors for SCNT. The cloned fetuses and piglets were characterized by DNA sequencing. Expression of α-Gal epitope was further examined by flow cytometry and confocal microscopy. RESULTS: SURVEYOR assay revealed 6.48% ZFN activity in LDC. GTKO cells were obtained by counter-selection 10 d after ZFN transfection. A total of six fetuses and 13 piglets were produced by SCNT. All fetuses and piglets had biallelic mutations in the ZFN targeted region and were negative for α-Gal epitope. CONCLUSIONS: Biallelic GGTA1 gene disruption in LDC was generated efficiently by ZFN. GTKO fetuses were produced from ZFN-treated LDC by SCNT. GTKO piglets were obtained by SCNT of ZFN-treated LDC or recloning of fetal fibroblasts from GTKO fetuses. With longer lifespan and robust growth rate, LDC has the potential to endure multiple genetic modifications in vitro without going to SCNT, which could accelerate the production of genetically modified pig organs for xenotransplantation.


Assuntos
Endonucleases/genética , Galactosiltransferases/genética , Técnicas de Inativação de Genes/métodos , Fígado/citologia , Técnicas de Transferência Nuclear , Dedos de Zinco , Animais , Suínos , Transplante Heterólogo
16.
Xenotransplantation ; 19(4): 249-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22909138

RESUMO

BACKGROUND: Xenotransplantation has the potential to solve the critical shortage of human organs available for allotransplantation. The major barrier to porcine liver xenotransplantation is sequestration of human platelets causing thrombocytopenia. Porcine liver sinusoidal endothelial cells (LSEC) bind and phagocytose human platelets at least in part through binding of the asialoglycoprotein receptor 1 (ASGR1). Our purpose was to generate an immortalized porcine LSEC (iLSEC) line that mimics primary LSEC in ASGR1 expression and phagocytosis of human platelets. Porcine iLSEC would enable continued study of xenotransplantation-induced thrombocytopenia in vitro with fewer animals sacrificed. METHODS: Primary domestic porcine LSEC were transduced with lentiviral vector expressing the large and small T antigen of SV40 (SV40 TAg). The phenotype and genotype of the immortalized LSEC were compared with primary LSEC. RESULTS: A total of eight clones expressing SV40 TAg were isolated, and one clone was subcultured and analyzed for growth, phenotype, and function during passages 15-40. Expression of the SV40 TAg was confirmed by confocal microscopy and western blot. MTS cell proliferation assay demonstrated that the clone rapidly grew in culture medium with 2-10% fetal bovine serum. iLSEC expressed the endothelial cell marker, CD31, as determined by confocal microscopy and flow cytometry. Activation of iLSEC by treatment with lipopolysaccharide (LPS) resulted in upregulation of the inflammatory cytokine interleukin 6 (IL 6) by qPCR and ELISA. iLSEC phagocytosed human serum albumin and latex beads as measured by flow cytometry. Human platelets were phagocytosed by immortalized porcine LSEC. CONCLUSIONS: Immortalized porcine LSEC retain a phagocytic phenotype, making them a good model for the study of xenotransplantation-induced thrombocytopenia and may provide further insight into the phagocytic role of LSEC.


Assuntos
Hepatócitos/transplante , Trombocitopenia/etiologia , Transplante Heterólogo/efeitos adversos , Animais , Antígenos Transformantes de Poliomavirus/genética , Receptor de Asialoglicoproteína/metabolismo , Plaquetas/metabolismo , Bovinos , Linhagem Celular Transformada , Proliferação de Células , Células Endoteliais/fisiologia , Células Endoteliais/transplante , Hepatócitos/fisiologia , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Fígado/citologia , Modelos Biológicos , Fagocitose , Sus scrofa , Suínos
17.
J Immunol ; 180(8): 5267-74, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18390707

RESUMO

Chronic viral infections cause high levels of morbidity and mortality worldwide, making the development of effective therapies a high priority for improving human health. We have used mice infected with Friend virus as a model to study immunotherapeutic approaches to the cure of chronic retroviral infections. In chronic Friend virus infections CD4(+) T regulatory (Treg) cells suppress CD8(+) T cell effector functions critical for virus clearance. In this study, we demonstrate that immunotherapy with a combination of agonistic anti-CD137 Ab and virus-specific, TCR-transgenic CD8(+) T cells produced greater than 99% reductions of virus levels within 2 wk. In vitro studies indicated that the CD137-specific Ab rendered the CD8(+) T cells resistant to Treg cell-mediated suppression with no direct effect on the suppressive function of the Treg cells. By 2 weeks after transfer, the adoptively transferred CD8(+) T cells were lost, likely due to activation-induced cell death. The highly focused immunological pressure placed on the virus by the single specificity CD8(+) T cells led to the appearance of escape variants, indicating that broader epitope specificity will be required for long-term virus control. However, the results demonstrate a potent strategy to potentiate the function of CD8(+) T cells in the context of immunosuppressive Treg cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Leucemia Murina de Friend/imunologia , Infecções por Retroviridae/imunologia , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Transferência Adotiva , Animais , Anticorpos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Retroviridae/terapia , Infecções por Retroviridae/virologia , Baço/virologia , Linfócitos T Reguladores/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/terapia , Infecções Tumorais por Vírus/virologia
18.
Cell Microbiol ; 9(5): 1172-90, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17217429

RESUMO

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a threat to human health worldwide. Although progress has been made, mechanisms of CA-MRSA pathogenesis are poorly understood and a comprehensive analysis of CA-MRSA exoproteins has not been conducted. To address that deficiency, we used proteomics to identify exoproteins made by MW2 (USA400) and LAC (USA300) during growth in vitro. Two hundred and fifty unique exoproteins were identified by 2-dimensional gel electrophoresis coupled with automated direct infusion-tandem mass spectrometry (ADI-MS/MS) analysis. Eleven known virulence-related exoproteins differed in abundance between the strains, including alpha-haemolysin (Hla), collagen adhesin (Cna), staphylokinase (Sak), coagulase (Coa), lipase (Lip), enterotoxin C3 (Sec3), enterotoxin Q (Seq), V8 protease (SspA) and cysteine protease (SspB). Mice infected with MW2 or LAC produced antibodies specific for known or putative virulence factors, such as autolysin (Atl), Cna, Ear, ferritin (Ftn), Lip, 1-phosphatidylinositol phosphodiesterase (Plc), Sak, Sec3 and SspB, indicating the exoproteins are made during infection in vivo. We used confocal microscopy to demonstrate aureolysin (Aur), Hla, SspA and SspB are produced following phagocytosis by human neutrophils, thereby linking exoprotein production in vitro with that during host-pathogen interaction. We conclude that the exoproteins identified herein likely account in part for the success of CA-MRSA as a human pathogen.


Assuntos
Proteínas de Bactérias/análise , Resistência a Meticilina , Meticilina/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Exotoxinas/metabolismo , Humanos , Immunoblotting , Focalização Isoelétrica , Microscopia Confocal , Microscopia de Fluorescência , Neutrófilos/microbiologia , Proteômica/métodos , Análise de Sequência de Proteína , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Espectrometria de Massas em Tandem , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA