Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 100-101: 36-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153932

RESUMO

INTRODUCTION: The biological consequences of absorbed radiation doses are ill-defined for radiopharmaceuticals, unlike for external beam radiotherapy (EBRT). A reliable assay that assesses the biological consequences of any radionuclide is much needed. Here, we evaluated the cell-free plasmid DNA assay to determine the relative biological effects of radionuclides such as Auger electron-emitting [67Ga]GaCl3 or [111In]InCl3 compared to EBRT. METHODS: Supercoiled pBR322 plasmid DNA (1.25 or 5 ng/µL) was incubated with 0.5 or 1 MBq [67Ga]GaCl3 or [111In]InCl3 for up to 73 h or was exposed to EBRT (137Cs; 5 Gy/min; 0-40 Gy). The induction of relaxed and linear plasmid DNA, representing single and double strand breaks, respectively, was assessed by gel electrophoresis. Chelated forms of 67Ga were also investigated using DOTA and THP. Topological conversion rates for supercoiled-to-relaxed (ksrx) or relaxed-to-linear (krlx) DNA were obtained by fitting a kinetic model. RESULTS: DNA damage increased both with EBRT dose and incubation time for [67Ga]GaCl3 and [111In]InCl3. Damage caused by [67Ga]GaCl3 decreased when chelated. [67Ga]GaCl3 proved more damaging than [111In]InCl3; 1.25 ng/µL DNA incubated with 0.5 MBq [67Ga]GaCl3 for 2 h led to a 70% decrease of intact plasmid DNA as opposed to only a 19% decrease for [111In]InCl3. For both EBRT and radionuclides, conversion rates were slower for 5 ng/µL than 1.25 ng/µL plasmid DNA. DNA damage caused by 1 Gy EBRT was the equivalent to damage caused by 0.5 MBq unchelated [67Ga]GaCl3 and [111In]InCl3 after 2.05 ± 0.36 and 9.3 ± 0.77 h of incubation, respectively. CONCLUSIONS: This work has highlighted the power of the plasmid DNA assay for a rapid determination of the relative biological effects of radionuclides compared to external beam radiotherapy. It is envisaged this approach will enable the systematic assessment of imaging and therapeutic radionuclides, including Auger electron-emitters, to further inform radiopharmaceutical design and application.


Assuntos
Radioisótopos de Gálio
2.
Nucleic Acids Res ; 45(8): 4687-4695, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334870

RESUMO

We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands.


Assuntos
DNA Helicases/química , DNA Super-Helicoidal/química , Proteína de Replicação A/química , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Fenômenos Biomecânicos , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Humanos , Cinética , Campos Magnéticos , Pinças Ópticas , Concentração Osmolar , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/metabolismo
5.
J Am Chem Soc ; 132(43): 15410-7, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20929226

RESUMO

Semiconducting polymer dots (Pdots) represent a new class of ultrabright fluorescent probes for biological imaging. They exhibit several important characteristics for experimentally demanding in vitro and in vivo fluorescence studies, such as their high brightness, fast emission rate, excellent photostability, nonblinking, and nontoxic feature. However, controlling the surface chemistry and bioconjugation of Pdots has been a challenging problem that prevented their widespread applications in biological studies. Here, we report a facile yet powerful conjugation method that overcomes this challenge. Our strategy for Pdot functionalization is based on entrapping heterogeneous polymer chains into a single dot, driven by hydrophobic interactions during nanoparticle formation. A small amount of amphiphilic polymer bearing functional groups is co-condensed with the majority of semiconducting polymers to modify and functionalize the nanoparticle surface for subsequent covalent conjugation to biomolecules, such as streptavidin and immunoglobulin G (IgG). The Pdot bioconjugates can effectively and specifically label cellular targets, such as cell surface marker in human breast cancer cells, without any detectable nonspecific binding. Single-particle imaging, cellular imaging, and flow cytometry experiments indicate a much higher fluorescence brightness of Pdots compared to those of Alexa dye and quantum dot probes. The successful bioconjugation of these ultrabright nanoparticles presents a novel opportunity to apply versatile semiconducting polymers to various fluorescence measurements in modern biology and biomedicine.


Assuntos
Polímeros/química , Polímeros/metabolismo , Semicondutores , Antígenos/imunologia , Biotina/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/imunologia , Imagem Molecular , Espectrometria de Fluorescência , Coloração e Rotulagem , Estreptavidina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA