Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 5(10): 1367-1381, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34413506

RESUMO

Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.


Assuntos
Arabidopsis , Arabidopsis/genética , Diploide , Genoma de Planta , Humanos , Hibridização Genética , Poliploidia
2.
J Oncol Pharm Pract ; 25(8): 1987-1994, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31390959

RESUMO

Chemotherapy checking is a complex task and requires a high level of alertness and attention to detail. Learning tools are required to teach the fundamental principles of chemotherapy checking. In conjunction with a graphic design team and with input from Human Factors specialists, an online chemotherapy checking training module was created. A variety of learning methods were incorporated including pre-reading, hands on training, case scenarios, and exam questions. The necessary skills to safely complete chemotherapy checking can be enhanced by the use of this training module.


Assuntos
Antineoplásicos/normas , Competência Clínica , Instrução por Computador , Humanos , Âmbito da Prática
3.
Mol Biol Evol ; 34(4): 957-968, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087777

RESUMO

Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico/métodos , Especiação Genética , Sequência de Bases/genética , Variação Genética/genética , Genoma/genética , Genoma de Planta/genética , Filogenia , Poliploidia , Autofertilização/genética , Análise de Sequência de DNA/métodos , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA