Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114531, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058591

RESUMO

Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.

2.
Nat Struct Mol Biol ; 27(2): 192-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042150

RESUMO

Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron-sulfur (Fe-S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Mutação Puntual , Agregação Patológica de Proteínas/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Quelantes de Ferro/metabolismo , Lipoilação , Proteínas de Membrana/metabolismo , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Multimerização Proteica
3.
Nat Commun ; 9(1): 3986, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266908

RESUMO

Heterozygous de novo mutations in the neuronal protein Munc18-1 are linked to epilepsies, intellectual disability, movement disorders, and neurodegeneration. These devastating diseases have a poor prognosis and no known cure, due to lack of understanding of the underlying disease mechanism. To determine how mutations in Munc18-1 cause disease, we use newly generated S. cerevisiae strains, C. elegans models, and conditional Munc18-1 knockout mouse neurons expressing wild-type or mutant Munc18-1, as well as in vitro studies. We find that at least five disease-linked missense mutations of Munc18-1 result in destabilization and aggregation of the mutant protein. Aggregates of mutant Munc18-1 incorporate wild-type Munc18-1, depleting functional Munc18-1 levels beyond hemizygous levels. We demonstrate that the three chemical chaperones 4-phenylbutyrate, sorbitol, and trehalose reverse the deficits caused by mutations in Munc18-1 in vitro and in vivo in multiple models, offering a novel strategy for the treatment of varied encephalopathies.


Assuntos
Encefalopatias/genética , Proteínas Munc18/genética , Mutação de Sentido Incorreto , Compostos Orgânicos/farmacologia , Animais , Encefalopatias/metabolismo , Encefalopatias/prevenção & controle , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Camundongos Knockout , Proteínas Munc18/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilbutiratos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Proteínas de Saccharomyces cerevisiae/metabolismo , Sorbitol/farmacologia , Trealose/farmacologia
4.
Sci Transl Med ; 4(147): 147ra113, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896677

RESUMO

Activation of the proteasomal degradation of misfolded proteins has been proposed as a therapeutic strategy for treating neurodegenerative diseases, but it is unclear whether proteasome dysfunction contributes to neurodegeneration. We tested the role of proteasome activity in neurodegeneration developed by mice lacking cysteine string protein-α (CSPα). Unexpectedly, we found that proteasome inhibitors alleviated neurodegeneration in CSPα-deficient mice, reversing impairment of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-complex assembly and extending life span. We tested whether dysfunctional SNARE-complex assembly could contribute to neurodegeneration in Alzheimer's and Parkinson's disease by analyzing postmortem brain tissue from these patients; we found reduced SNARE-complex assembly in the brain tissue samples. Our results suggest that proteasomal activation may not always be beneficial for alleviating neurodegeneration and that blocking the proteasome may represent a potential therapeutic avenue for treating some forms of neurodegenerative disease.


Assuntos
Degeneração Neural/metabolismo , Degeneração Neural/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas SNARE/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Proteínas de Choque Térmico HSP40/deficiência , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/patologia , Fenótipo
5.
EMBO J ; 31(4): 829-41, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22187053

RESUMO

At a synapse, the synaptic vesicle protein cysteine-string protein-α (CSPα) functions as a co-chaperone for the SNARE protein SNAP-25. Knockout (KO) of CSPα causes fulminant neurodegeneration that is rescued by α-synuclein overexpression. The CSPα KO decreases SNAP-25 levels and impairs SNARE-complex assembly; only the latter but not the former is reversed by α-synuclein. Thus, the question arises whether the CSPα KO phenotype is due to decreased SNAP-25 function that then causes neurodegeneration, or due to the dysfunction of multiple as-yet uncharacterized CSPα targets. Here, we demonstrate that decreasing SNAP-25 levels in CSPα KO mice by either KO or knockdown of SNAP-25 aggravated their phenotype. Conversely, increasing SNAP-25 levels by overexpression rescued their phenotype. Inactive SNAP-25 mutants were unable to rescue, showing that the rescue was specific. Under all conditions, the neurodegenerative phenotype precisely correlated with SNARE-complex assembly, indicating that impaired SNARE-complex assembly due to decreased SNAP-25 levels is the ultimate correlate of neurodegeneration. Our findings suggest that the neurodegeneration in CSPα KO mice is primarily produced by defective SNAP-25 function, which causes neurodegeneration by impairing SNARE-complex assembly.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Proteínas de Membrana/fisiologia , Proteína 25 Associada a Sinaptossoma/fisiologia , Animais , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fenótipo , Transmissão Sináptica , Proteína 25 Associada a Sinaptossoma/genética
6.
Nat Cell Biol ; 13(1): 30-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151134

RESUMO

A neuron forms thousands of presynaptic nerve terminals on its axons, far removed from the cell body. The protein CSPα resides in presynaptic terminals, where it forms a chaperone complex with Hsc70 and SGT. Deletion of CSPα results in massive neurodegeneration that impairs survival in mice and flies. In CSPα-knockout mice, levels of presynaptic SNARE complexes and the SNARE protein SNAP-25 are reduced, suggesting that CSPα may chaperone SNARE proteins, which catalyse synaptic vesicle fusion. Here, we show that the CSPα-Hsc70-SGT complex binds directly to monomeric SNAP-25 to prevent its aggregation, enabling SNARE-complex formation. Deletion of CSPα produces an abnormal SNAP-25 conformer that inhibits SNARE-complex formation, and is subject to ubiquitylation and proteasomal degradation. Even in wild-type mouse terminals, SNAP-25 degradation is regulated by synaptic activity; this degradation is decreased by CSPα overexpression, and enhanced by CSPα deletion. Thus, SNAP-25 function is maintained during rapid SNARE cycles by equilibrium between CSPα-dependent chaperoning and ubiquitin-dependent degradation, revealing unique protein quality-control machinery within the presynaptic compartment.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Proteínas de Membrana/fisiologia , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Células Cultivadas , Feminino , Células HEK293 , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Immunoblotting , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas SNARE/genética , Proteína 25 Associada a Sinaptossoma/genética , Temperatura , Ubiquitinação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia
7.
Science ; 329(5999): 1663-7, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20798282

RESUMO

Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as α-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, α-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.


Assuntos
Envelhecimento , Degeneração Neural/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas SNARE/metabolismo , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Fusão de Membrana , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
8.
J Neurochem ; 103(1): 276-87, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17623043

RESUMO

Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Células PC12 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Frações Subcelulares/química , Vesículas Sinápticas/química , Sinaptossomos/química , Sinaptossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA