Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1251-1261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144326

RESUMO

Supplementation with marine-derived n-3 long-chain polyunsaturated fatty acids (LC PUFAs), eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) is linked to beneficial health effects in both humans and horses. Krill oil (KO), which is extracted from the Antarctic krill (Euphausia superba), is well documented as a safe and biologically available dietary supplement in humans and several animal species, but there is a lack of documentation regarding its effect as a dietary ingredient for horses. The objective of this study was to test whether KO as a dietary supplement had the ability to raise horse red blood cell (RBC) membrane EPA and DHA, expressed as the n-3 index. Five nonworking Norwegian cold-blooded trotter horse geldings (body weight [BW]: 567 ± 38 kg) were supplemented with KO (10 mL/100 kg BW) for 35 days in a longitudinal study. Blood samples were analysed for RBC membrane fatty acid (FA) profile, haematology and serum biochemistry every 7th day. KO was well accepted by all horses, and no adverse health effects were observed during the 35-day trial period. KO supplementation affected the RBC membrane FA profile by increasing the n-3 index from Day 0 to 35 (Day 0: 0.53% vs. Day 35: 4.05% of total RBC FAs). The observed increase in the sum of EPA and DHA (p < 0.001), total n-3 FAs (p < 0.001) and the reduction of n-6 FAs (p < 0.044) resulted in a lower n-6:n-3 ratio (p < 0.001) by Day 35 of KO supplementation. In conclusion, the RBC n-3 index was increased and the general n-6:n-3 ratio was decreased in horses receiving 35-day dietary KO supplementation.


Assuntos
Euphausiacea , Ácidos Graxos Ômega-3 , Animais , Masculino , Membrana Celular , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico , Euphausiacea/química , Euphausiacea/metabolismo , Ácidos Graxos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe , Cavalos , Estudos Longitudinais
2.
Nutrients ; 13(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959789

RESUMO

There is evidence that both omega-3 polyunsaturated fatty acids (n-3 PUFAs) and choline can influence sports performance, but information establishing their combined effects when given in the form of krill oil during power training protocols is missing. The purpose of this study was therefore to characterize n-3 PUFA and choline profiles after a one-hour period of high-intensity physical workout after 12 weeks of supplementation. Thirty-five healthy power training athletes received either 2.5 g/day of Neptune krill oilTM (550 mg EPA/DHA and 150 mg choline) or olive oil (placebo) in a randomized double-blind design. After 12 weeks, only the krill oil group showed a significant HS-Omega-3 Index increase from 4.82 to 6.77% and a reduction in the ARA/EPA ratio (from 50.72 to 13.61%) (p < 0.001). The krill oil group showed significantly higher recovery of choline concentrations relative to the placebo group from the end of the first to the beginning of the second exercise test (p = 0.04) and an 8% decrease in total antioxidant capacity post-exercise versus 21% in the placebo group (p = 0.35). In conclusion, krill oil can be used as a nutritional strategy for increasing the HS-Omega-3 Index, recover choline concentrations and address oxidative stress after intense power trainings.


Assuntos
Desempenho Atlético/fisiologia , Colina/administração & dosagem , Euphausiacea , Óleos de Peixe/administração & dosagem , Treinamento Intervalado de Alta Intensidade , Adulto , Animais , Antioxidantes/metabolismo , Colina/sangue , Suplementos Nutricionais , Método Duplo-Cego , Ácidos Graxos Ômega-3/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
3.
Front Nutr ; 7: 133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015116

RESUMO

Choline is an essential nutrient that has been implicated in athletic performance due to its role in maintaining normal muscle function. The concentration of free choline in serum may decrease during long-distance high-intensity exercise, yet few nutritional strategies to counteract this potentially performance-depleting loss in choline have been investigated outside the laboratory. This exploratory field study was performed to investigate if pre-race supplementation with phosphatidylcholine from krill oil can counteract the expected drop in choline and some of its metabolites during triathlon competitions. Forty-seven triathletes, 12 females and 35 males ranging in age from 25 to 61 years, were recruited from participants in the Ironman-distance Norseman Xtreme triathlon and the Sprint/Olympic-distance Oslo Triathlon. Twenty-four athletes were randomly allocated to the krill oil group, receiving 4 g of SuperbaBoost™ krill oil daily for 5 weeks prior to the race, and 23 athletes were randomly allocated to the placebo group, receiving 4 g of mixed vegetable oil daily. Blood samples were obtained before the race, immediately after completion of the race, and the day after the race for analysis of choline and its metabolites. The results showed that serum choline concentrations significantly decreased from pre-race to race finish in all races, with a more pronounced decrease observed in the Ironman-distance Norseman Xtreme triathlon (34% decrease) relative to the Sprint/Olympic-distance Oslo Triathlon (15% decrease). A reduction in betaine was also observed, while dimethylglycine (DMG) concentrations remained stable across all time points. Significantly higher concentrations of choline (9.4% on average) and DMG (21.4% on average) were observed in the krill oil compared to the placebo group, and the krill oil group showed a significantly greater increase in serum choline following race completion. In conclusion, krill oil may help to prevent that circulating choline concentrations become limiting during endurance competitions.

4.
Lipids Health Dis ; 14: 88, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260413

RESUMO

BACKGROUND: Marine food is an important source of omega-3 fatty acids with beneficial health effects. Oils from marine organisms have different fatty acid composition and differ in their molecular composition. Fish oil (FO) has a high content of eicosapentaenoic and docosahexaenoic acids mainly esterified to triacylglycerols, while in krill oil (KO) these fatty acids are mainly esterified to phospholipids. The aim was to study the effects of these oils on the lipid content and fatty acid distribution in the various lipid classes in liver and brain of mice. METHODS: Mice were fed either a high-fat diet (HF), a HF diet supplemented with FO or with KO (n = 6). After six weeks of feeding, liver and brain lipid extracts were analysed using a shotgun and TAG lipidomics approach. Student t-test was performed after log-transformation to compare differences between study groups. RESULTS: Six weeks of feeding resulted in significant changes in the relative abundance of many lipid classes compared to control mice. In both FO and KO fed mice, the triacylglycerol content in the liver was more than doubled. The fatty acid distribution was affected by the oils in both liver and brain with a decrease in the abundance of 18:2 and 20:4, and an increase in 20:5 and 22:6 in both study groups. 18:2 decreased in all lipid classes in the FO group but with only minor changes in the KO group. Differences between the feeding groups were particularly evident in some of the minor lipid classes that are associated with inflammation and insulin resistance. Ceramides and diacylglycerols were decreased and cholesteryl esters increased in the liver of the KO group, while plasmalogens were decreased in the FO group. In the brain, diacylglycerols were decreased, more by KO than FO, while ceramides and lactosylceramides were increased, more by FO than KO. CONCLUSION: The changes in the hepatic sphingolipids and 20:4 fatty acid levels were greater in the KO compared to the FO fed mice, and are consistent with a hypothesis that krill oil will have a stronger anti-inflammatory action and enhances insulin sensitivity more potently than fish oil.


Assuntos
Encéfalo/metabolismo , Euphausiacea/química , Comportamento Alimentar , Óleos de Peixe/farmacologia , Lipídeos/química , Fígado/metabolismo , Metaboloma/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , Camundongos
5.
Eur J Nutr ; 54(7): 1055-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25315197

RESUMO

PURPOSE: This study was conducted to investigate the effect of fish oil (FO) and krill oil (KO) supplementation on glucose tolerance in obese New Zealand white rabbits. METHODS: The experiments were carried out with 24 male rabbits randomly divided into four groups: KO-castrated, treated with KO; FO-castrated, treated with FO; C-castrated, non-treated; NC-non-castrated, non-treated. At the end of treatment period (2 months), an intravenous glucose tolerance test (IVGTT) was performed in all rabbits. RESULTS: Fasting blood glucose concentrations in FO and KO animals were significantly lower than in group C. The blood glucose concentrations in FO- and KO-treated animals returned to initial values after 30 and 60 min of IVGTT, respectively. In liver, carnitine palmitoyltransferase 2 (Cpt2) and 3-hydroxy-3-methyl-glutaryl-CoA synthase 2 (Hmgcs2) genes were significantly increased in FO-fed rabbits compared with the C group. Acetyl-CoA carboxylase alpha (Acaca) expression was significantly reduced in both KO- and FO-fed rabbits. In skeletal muscle, Hmgcs2 and Cd36 were significantly higher in KO-fed rabbits compared with the C group. Acaca expression was significantly lower in KO- and FO-fed rabbits compared with the C group. CONCLUSION: The present results indicate that FO and KO supplementation decreases fasting blood glucose and improves glucose tolerance in obese New Zealand white rabbits. This could be ascribed to the ameliorated insulin sensitivity and insulin secretion and modified gene expressions of some key enzymes involved in ß-oxidation and lipogenesis in liver and skeletal muscle.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Obesidade/sangue , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Glicemia/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Euphausiacea , Peixes , Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coelhos
6.
Nutr Metab (Lond) ; 11: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834104

RESUMO

BACKGROUND: Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. METHODS: Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. RESULTS: Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of isoprenoid/cholesterol and lipid synthesis. CONCLUSIONS: The data show that both FO and KO promote lowering of plasma lipids and regulate lipid homeostasis, but with different efficiency and partially via different mechanisms.

7.
Nutr Res ; 34(2): 126-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24461313

RESUMO

The aim of the study was to explore the effects of 12 weeks daily krill oil supplementation on fasting serum triglyceride (TG) and lipoprotein particle levels in subjects whose habitual fish intake is low and who have borderline high or high fasting serum TG levels (150-499 mg/dL). We hypothesized that Krill oil lowers serum TG levels in subjects with borderline high or high fasting TG levels. To test our hypothesis 300 male and female subjects were included in a double-blind, randomized, multi-center, placebo-controlled study with five treatment groups: placebo (olive oil) or 0.5, 1, 2, or 4 g/day of krill oil. Serum lipids were measured after an overnight fast at baseline, 6 and 12 weeks. Due to a high intra-individual variability in TG levels, data from all subjects in the four krill oil groups were pooled to increase statistical power, and a general time- and dose-independent one-way analysis of variance was performed to assess efficacy. Relative to subjects in the placebo group, those administered krill oil had a statistically significant calculated reduction in serum TG levels of 10.2%. Moreover, LDL-C levels were not increased in the krill oil groups relative to the placebo group. The outcome of the pooled analysis suggests that krill oil is effective in reducing a cardiovascular risk factor. However, owing to the individual fluctuations of TG concentrations measured, a study with more individual measurements per treatment group is needed to increase the confidence of these findings.


Assuntos
LDL-Colesterol/sangue , Gorduras na Dieta/uso terapêutico , Suplementos Nutricionais , Euphausiacea , Hipertrigliceridemia/tratamento farmacológico , Óleos/uso terapêutico , Triglicerídeos/sangue , Adulto , Animais , Gorduras na Dieta/farmacologia , Método Duplo-Cego , Feminino , Humanos , Hipertrigliceridemia/prevenção & controle , Masculino , Pessoa de Meia-Idade , Óleos/farmacologia
8.
Toxicol Rep ; 1: 764-776, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962289

RESUMO

The safety of krill oil was assessed in a subchronic toxicity study and in a genotoxicity test. In a 13-week study, rats were fed krill oil or control diets. There were no differences noted in body weight, food consumption or in the functional observation battery parameters in either gender. Differences in both haematology and clinical chemistry values were noted in the krill oil-treated groups. However these findings were of no toxicological significance. Significant decreases in absolute and covariant heart weight in some krill oil-treated animals were noted although no corresponding histological changes were observed. In addition, periportal microvesicular hepatocyte vacuolation was noted histologically in males fed 5% krill oil. This finding was not associated with other indications of hepatic dysfunction. Given that the effects of the 13-week toxicity study were non-toxic in nature, the no observed adverse effect level (NOAEL) for the conditions of this study was considered to be 5% krill oil. The genotoxicity experiments documented no mutagenicity of krill oil in bacteria.

9.
Lipids Health Dis ; 12: 6, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351783

RESUMO

BACKGROUND: The purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats. METHODS: Cognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO. Imipramine (IMIP) was used as the antidepressant reference substance. RESULTS: After 7 weeks of KO intake, both males and females treated with KO were significantly better in discriminating between the active and the inactive levers in the ALSAT from day 1 of training (p<0.01). Both KO and IMIP prevented resignation/depression on the third day in the UALST. Similarly, a shorter immobility time was observed for the KO and IMIP groups compared to the control in the FST (p<0.001). These data support a robust antidepressant-like potential and beneficial cognitive effect of KO. Changes in expression of synaptic plasticity-related genes in the prefrontal cortex and hippocampus were also investigated. mRNA for brain-derived neurotrophic factor (Bdnf) was specifically upregulated in the hippocampus of female rats receiving 7 weeks of KO supplementation (p=0.04) and a similar trend was observed in males (p=0.08). Males also exhibited an increase in prefrontal cortex expression of Arc mRNA, a key protein in long-term synaptic plasticity (p=0.05). IMIP induced clear effects on several plasticity related genes including Bdnf and Arc. CONCLUSIONS: These results indicate that active components (eicosapentaenoic acid, docosahexaenoic acid and astaxanthin) in KO facilitate learning processes and provide antidepressant-like effects. Our findings also suggest that KO might work through different physiological mechanisms than IMIP.


Assuntos
Antidepressivos/farmacologia , Cognição/efeitos dos fármacos , Depressão/prevenção & controle , Gorduras Insaturadas na Dieta/farmacologia , Euphausiacea/química , Nootrópicos/farmacologia , Animais , Antidepressivos/isolamento & purificação , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Gorduras Insaturadas na Dieta/isolamento & purificação , Feminino , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Imipramina/farmacologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/isolamento & purificação , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Natação
10.
Lipids Health Dis ; 11: 82, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22738017

RESUMO

BACKGROUND: Excess peroxisome proliferator-activated receptor (PPAR) stimulation has been associated with detrimental health effects including impaired myocardial function. Recently, supplementation with n-3 polyunsaturated fatty acids (PUFA) has been associated with improved left ventricular function and functional capacity in patients with dilated cardiomyopathy. We investigated the long-term effects of the pan-PPAR agonist tetradecylthioacetic acid (TTA) and/or high-dose fish oil (FO) on cardiac fatty acid (FA) composition and lipid metabolism. Male Wistar rats were given one out of four different 25% (w/v) fat diets: control diet; TTA diet; FO diet; or diet containing both TTA and FO. RESULTS: After 50 weeks n-3 PUFA levels were increased by TTA and FO in the heart, whereas liver levels were reduced following TTA administration. TTA was associated with a decrease in arachidonic acid, increased activities of carnitine palmitoyltransferase II, fatty acyl-CoA oxidase, glycerol-3-phosphate acyltransferase, and fatty acid synthase in the heart. Furthermore, cardiac Ucp3 and Cact mRNA was upregulated. CONCLUSIONS: Long-term treatment with the pan-PPAR agonist TTA or high-dose FO induced marked changes in PUFA composition and enzymatic activity involved in FA metabolism in the heart, different from liver. Changes included increased FA oxidation and a selective increase in cardiac n-3 PUFA.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/administração & dosagem , Miocárdio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Sulfetos/administração & dosagem , Acil-CoA Oxidase/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Óleos de Peixe/farmacologia , Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miocárdio/enzimologia , Especificidade de Órgãos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Sulfetos/farmacologia , Fatores de Tempo , Proteína Desacopladora 3
11.
PLoS One ; 7(6): e38797, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685607

RESUMO

Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.


Assuntos
Suplementos Nutricionais , Euphausiacea/química , Fígado Gorduroso/prevenção & controle , Óleos/farmacologia , Acetil-CoA Carboxilase/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Lipídeos/análise , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Óleos/química , Tamanho do Órgão/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Metabolism ; 61(10): 1461-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22538117

RESUMO

A promising approach to ameliorate obesity and obesity-associated diseases is the identification of new sources of dietary ingredients. The present study investigated the hepatic regulation of energy metabolism after feeding a powder isolated from Antarctic krill (Euphausia superba) in a transgenic mouse model of chronic inflammation (human tumor necrosis factor-alpha (hTNFα) mice) known to display unfavorable effects on lipid metabolism. Male hTNFα mice were fed high-fat diets (23.6%, w/w) with or without krill powder (6.4% lipids, 4.3% protein, w/w) for 6 weeks. Blood, liver lipid, and fatty acid composition, as well as hepatic enzyme activities and gene expressions, were determined. Krill powder fed mice displayed lowered hepatic and plasma triacylglycerol levels compared to mice on a high-fat casein diet. This was accompanied by down-regulated hepatic expression of genes involved in lipogenesis and glycerolipid synthesis, and increased ß-oxidation activity. In addition, the krill powder diet lowered plasma levels of cholesterol, as well as hepatic gene expression of sterol regulatory element binding transcription factor 2 (SREBP2) and enzymes involved in cholesterol synthesis. Notably, genes involved in glycolysis and gluconeogenesis were significantly reduced in liver by the krill powder diet, while genes involved in oxidative phosphorylation and uncoupling were not affected. Krill powder also reduced endogenous TNFα in liver, indicating an anti-inflammatory effect. In a high-fat mouse model with disturbed lipid metabolism due to persistent hTNFα expression, krill powder showed significant effects on hepatic glucose- and lipid metabolism, resulting in an improved lipid status in liver and plasma.


Assuntos
Dieta Hiperlipídica , Euphausiacea , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Peso Corporal , Ingestão de Alimentos , Ácidos Graxos/metabolismo , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pós , Fator de Necrose Tumoral alfa/genética
13.
J Nutr Biochem ; 23(11): 1384-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22221672

RESUMO

The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.


Assuntos
Antioxidantes/farmacologia , Óleos de Peixe/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica , Suplementos Nutricionais , Enzimas/genética , Enzimas/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Iônicos/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Proteína Desacopladora 2 , Proteína Desacopladora 3
14.
Eur J Nutr ; 51(6): 741-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21986673

RESUMO

PURPOSE: The beneficial effects of a seafood-rich diet are highly documented and can be attributed to both n-3 polyunsaturated fatty acids and other less studied nutritional components including protein and antioxidants. The aim of the work was to investigate whether an under-utilized seafood source, eggs (roe) and sperm (milt) from herring (Clupea harengus), can affect lipid metabolism and inflammation in a mouse model transgenic for human tumor necrosis factor alpha (hTNFα). METHODS: A high-fat control diet (25% total fats, 20% protein, w/w) or high-fat diets supplemented with herring roe (3.7% fat, 15% protein, w/w), or milt (1.3% fat, 15% protein) were administered to female C57BL/6 hTNFα mice. After 2 weeks, hepatic enzyme activity, gene expression, lipid and fatty acid composition, fatty acid composition of epididymal adipose tissue, and plasma lipid and cytokine levels were determined. RESULTS: Animals fed herring roe and milt displayed an increased hepatic fatty acid ß-oxidation and reduced fatty acid synthase activity. However, while plasma TAG was reduced, hepatic TAG and plasma and hepatic cholesterol levels were increased by the herring diets. Both herring diets led to a substantial shift in the n-6:n-3 ratio in both liver and ovarian white adipose tissue. The herring diets also increased plasma carnitine and reduced the carnitine precursor trimethyllysine. Plasma short-chained acylcarnitine esters were significantly increased, which may reflect an increased ß-oxidation of long-chained fatty acids. In addition, the diets tended to reduce the plasma levels of pro-inflammatory cytokines. CONCLUSION: Herring roe or milt diets enhanced lipid catabolism and influenced the chronic inflammatory state in hTNFα-transgenic mice.


Assuntos
Suplementos Nutricionais , Ovos , Fígado Gorduroso/dietoterapia , Peixes , Metabolismo dos Lipídeos , Fígado/metabolismo , Espermatozoides , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Carnitina/sangue , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Ovos/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Feminino , Humanos , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica , Proteínas Recombinantes/metabolismo , Espermatozoides/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Lipids ; 46(8): 679-89, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21479675

RESUMO

The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced ß-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial ß-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels.


Assuntos
Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Sulfetos/metabolismo , Animais , Antioxidantes/administração & dosagem , Doença Crônica , Dieta , Ácidos Graxos/química , Feminino , Humanos , Lipídeos/sangue , Lipídeos/química , Camundongos , Camundongos Transgênicos , Ratos , Sulfetos/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
J Obes ; 2011: 435245, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21274278

RESUMO

A better understanding of the molecular links between obesity and disease is potentially of great benefit for society. In this paper we discuss proposed mechanisms whereby bariatric surgery improves metabolic health, including acute effects on glucose metabolism and long-term effects on metabolic tissues (adipose tissue, skeletal muscle, and liver) and mitochondrial function. More short-term randomized controlled trials should be performed that include simultaneous measurement of metabolic parameters in different tissues, such as tissue gene expression, protein profile, and lipid content. By directly comparing different surgical procedures using a wider array of metabolic parameters, one may further unravel the mechanisms of aberrant metabolic regulation in obesity and related disorders.

17.
Front Genet ; 2: 45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22303341

RESUMO

Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.

18.
J Immunol ; 169(8): 4161-71, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12370345

RESUMO

The proteasome produces MHC class I-restricted antigenic peptides carrying N-terminal extensions, which are trimmed by other peptidases in the cytosol or within the endoplasmic reticulum. In this study, we show that the N-terminal editing of an antigenic peptide with a predicted low TAP affinity can occur in the cytosol. Using proteomics, we identified two cytosolic peptidases, tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, that trimmed the N-terminal extensions of the precursors produced by the proteasome, and led to a transient enrichment of the final antigenic peptide. These peptidases acted either sequentially or redundantly, depending on the extension remaining at the N terminus of the peptides released from the proteasome. Inhibition of these peptidases abolished the CTL-mediated recognition of Ag-expressing cells. Although we observed some proteolytic activity in fractions enriched in endoplasmic reticulum, it could not compensate for the loss of tripeptidyl peptidase II/puromycin-sensitive aminopeptidase activities.


Assuntos
Acetilcisteína/análogos & derivados , Apresentação de Antígeno , Citosol/imunologia , Citosol/metabolismo , Antígenos HLA-B/metabolismo , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Prolina/metabolismo , Serina Endopeptidases/fisiologia , Acetilcisteína/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Sequência de Aminoácidos , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular , Citosol/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Inibidores Enzimáticos/farmacologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígeno HLA-B51 , Humanos , Hidrólise , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/imunologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Puromicina/farmacologia , Serina Endopeptidases/metabolismo , Linfócitos T Citotóxicos/enzimologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Transfecção , Células Tumorais Cultivadas
19.
Protein Expr Purif ; 26(1): 19-27, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12356466

RESUMO

The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.


Assuntos
Antígenos/química , Antígenos/metabolismo , Bioensaio/métodos , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Humanos , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA