Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
JACC CardioOncol ; 6(1): 38-50, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510289

RESUMO

Background: Genome-wide association studies and candidate gene association studies have identified more than 180 genetic variants statistically associated with anthracycline-induced cardiotoxicity (AIC). However, the lack of functional validation has hindered the clinical translation of these findings. Objectives: The aim of this study was to functionally validate all genes associated with AIC using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods: Through a systemic literature search, 80 genes containing variants significantly associated with AIC were identified. Additionally, 3 more genes with potential roles in AIC (GSTM1, CBR1, and ERBB2) were included. Of these, 38 genes exhibited expression in human fetal heart, adult heart, and hiPSC-CMs. Using clustered regularly interspaced short palindromic repeats/Cas9-based genome editing, each of these 38 genes was systematically knocked out in control hiPSC-CMs, and the resulting doxorubicin-induced cardiotoxicity (DIC) phenotype was assessed using hiPSC-CMs. Subsequently, functional assays were conducted for each gene knockout on the basis of hypothesized mechanistic implications in DIC. Results: Knockout of 26 genes increased the susceptibility of hiPSC-CMs to DIC. Notable genes included efflux transporters (ABCC10, ABCC2, ABCB4, ABCC5, and ABCC9), well-established DIC-associated genes (CBR1, CBR3, and RAC2), and genome-wide association study-discovered genes (RARG and CELF4). Conversely, knockout of ATP2B1, HNMT, POR, CYBA, WDR4, and COL1A2 had no significant effect on the in vitro DIC phenotype of hiPSC-CMs. Furthermore, knockout of the uptake transporters (SLC28A3, SLC22A17, and SLC28A1) demonstrated a protective effect against DIC. Conclusions: The present findings establish a comprehensive platform for the functional validation of DIC-associated genes, providing insights for future studies in DIC variant associations and potential mechanistic targets for the development of cardioprotective drugs.

2.
Sci Rep ; 14(1): 7123, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532120

RESUMO

Nilotinib is a highly effective treatment for chronic myeloid leukemia but has been consistently associated with the development of nilotinib-induced arterial disease (NAD) in a subset of patients. To date, which cell types mediate this effect and whether NAD results from on-target mechanisms is unknown. We utilized human induced pluripotent stem cells (hiPSCs) to generate endothelial cells and vascular smooth muscle cells for in vitro study of NAD. We found that nilotinib adversely affects endothelial proliferation and migration, in addition to increasing intracellular nitric oxide. Nilotinib did not alter endothelial barrier function or lipid uptake. No effect of nilotinib was observed in vascular smooth muscle cells, suggesting that NAD is primarily mediated through endothelial cells. To evaluate whether NAD results from enhanced inhibition of ABL1, we generated multiple ABL1 knockout lines. The effects of nilotinib remained unchanged in the absence of ABL1, suggesting that NAD results from off- rather than on-target signaling. The model established in the present study can be applied to future mechanistic and patient-specific pharmacogenomic studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Vasculares , Humanos , Células Endoteliais , NAD , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Doenças Vasculares/tratamento farmacológico
3.
J Am Heart Assoc ; 12(19): e029954, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37750583

RESUMO

Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.


Assuntos
Sobreviventes de Câncer , Cardiomiopatias , Neoplasias , Humanos , Criança , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/uso terapêutico , Metaloproteinase 9 da Matriz , Antraciclinas/efeitos adversos , Estudos de Casos e Controles , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/complicações , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Antibióticos Antineoplásicos/efeitos adversos , Miócitos Cardíacos , RNA Mensageiro , Expressão Gênica
4.
Stem Cell Reports ; 18(10): 1913-1924, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657447

RESUMO

The chemotherapeutic doxorubicin (DOX) detrimentally impacts the heart during cancer treatment. This necessitates development of non-cardiotoxic delivery systems that retain DOX anticancer efficacy. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), endothelial cells (hiPSC-ECs), cardiac fibroblasts (hiPSC-CFs), multi-lineage cardiac spheroids (hiPSC-CSs), patient-specific hiPSCs, and multiple human cancer cell lines to compare the anticancer efficacy and reduced cardiotoxicity of single protein encapsulated DOX (SPEDOX-6), to standard unformulated (UF) DOX. Cell viability assays and immunostaining in human cancer cells, hiPSC-ECs, and hiPSC-CFs revealed robust uptake of SPEDOX-6 and efficacy in killing these proliferative cell types. In contrast, hiPSC-CMs and hiPSC-CSs exhibited substantially lower cytotoxicity during SPEDOX-6 treatment compared with UF DOX. SPEDOX-6-treated hiPSC-CMs and hiPSC-CSs maintained their functionality, as indicated by sarcomere contractility assessment, calcium imaging, multielectrode arrays, and RNA sequencing. This study demonstrates the potential of SPEDOX-6 to alleviate cardiotoxic side effects associated with UF DOX, while maintaining its anticancer potency.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais , Células Cultivadas , Doxorrubicina/efeitos adversos
5.
Sci Rep ; 13(1): 12683, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542143

RESUMO

Anthracycline-induced cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Aberrant DNA methylation plays a role in de novo cardiovascular disease. Epigenetic processes could play a role in anthracycline-induced cardiomyopathy but remain unstudied. We sought to examine if genome-wide differential methylation at 'CpG' sites in peripheral blood DNA is associated with anthracycline-induced cardiomyopathy. This report used participants from a matched case-control study; 52 non-Hispanic White, anthracycline-exposed childhood cancer survivors with cardiomyopathy were matched 1:1 with 52 survivors with no cardiomyopathy. Paired ChAMP (Chip Analysis Methylation Pipeline) with integrated reference-based deconvolution of adult peripheral blood DNA methylation was used to analyze data from Illumina HumanMethylation EPIC BeadChip arrays. An epigenome-wide association study (EWAS) was performed, and the model was adjusted for GrimAge, sex, interaction terms of age at enrollment, chest radiation, age at diagnosis squared, and cardiovascular risk factors (CVRFs: diabetes, hypertension, dyslipidemia). Prioritized genes were functionally validated by gene knockout in human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 technology. DNA-methylation EPIC array analyses identified 32 differentially methylated probes (DMP: 15 hyper-methylated and 17 hypo-methylated probes) that overlap with 23 genes and 9 intergenic regions. Three hundred and fifty-four differential methylated regions (DMRs) were also identified. Several of these genes are associated with cardiac dysfunction. Knockout of genes EXO6CB, FCHSD2, NIPAL2, and SYNPO2 in hiPSC-CMs increased sensitivity to doxorubicin. In addition, EWAS analysis identified hypo-methylation of probe 'cg15939386' in gene RORA to be significantly associated with anthracycline-induced cardiomyopathy. In this genome-wide DNA methylation profile study, we observed significant differences in DNA methylation at the CpG level between anthracycline-exposed childhood cancer survivors with and without cardiomyopathy, implicating differential DNA methylation of certain genes could play a role in pathogenesis of anthracycline-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Antraciclinas/efeitos adversos , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Metilação de DNA , Epigênese Genética , DNA , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Ilhas de CpG , Antibióticos Antineoplásicos , Proteínas de Transporte/genética , Proteínas de Membrana/genética
6.
JACC CardioOncol ; 5(3): 392-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397079

RESUMO

Background: Anthracycline-related cardiomyopathy is a leading cause of premature death in childhood cancer survivors. The high interindividual variability in risk suggests the need to understand the underlying pathogenesis. Objectives: The authors interrogated differentially expressed genes (DEGs) to identify genetic variants serving regulatory functions or genetic variants not easily identified when using genomewide array platforms. Using leads from DEGs, candidate copy number variants (CNVs) and single-nucleotide variants (SNVs) were genotyped. Methods: Messenger RNA sequencing was performed on total RNA from peripheral blood of 40 survivors with cardiomyopathy (cases) and 64 matched survivors without cardiomyopathy (control subjects). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, anthracycline dose, and chest radiation was used to assess the associations between gene expression and cardiomyopathy and between CNVs and SNVs and cardiomyopathy. Results: Haptoglobin (HP) was identified as the top DEG. Participants with higher HP gene expression had 6-fold greater odds of developing cardiomyopathy (OR: 6.4; 95% CI: 1.4-28.6). The HP2-specific allele among the HP genotypes (HP1-1, HP1-2, and HP2-2) had higher transcript levels, as did the G allele among SNVs previously reported to be associated with HP gene expression (rs35283911 and rs2000999). The HP1-2 and HP2-2 genotypes combined with the G/G genotype for rs35283911 and/or rs2000999 placed the survivors at 4-fold greater risk (OR: 3.9; 95% CI: 1.0-14.5) for developing cardiomyopathy. Conclusions: These findings provide evidence of a novel association between HP2 allele and cardiomyopathy. HP binds to free hemoglobin to form an HP-hemoglobin complex, thereby preventing oxidative damage from free heme iron, thus providing biological plausibility to the mechanistic basis of the present observation.

7.
JACC CardioOncol ; 5(6): 807-818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205005

RESUMO

Background: Anthracyclines are highly effective in treating cancer, albeit with increased cardiomyopathy risk. Although risk is attributed to associations with single nucleotide polymorphisms (SNPs), multiple SNPs on a gene and their interactions remain unexamined. Objectives: This study examined gene-level associations with cardiomyopathy among cancer survivors using whole-exome sequencing data. Methods: For discovery, 278 childhood cancer survivors (129 cases; 149 matched control subjects) from the COG (Children's Oncology Group) study ALTE03N1 were included. Logic regression (machine learning) was used to identify gene-level SNP combinations for 7,212 genes and ordinal logistic regression to estimate gene-level associations with cardiomyopathy. Models were adjusted for primary cancer, age at cancer diagnosis, sex, race/ethnicity, cumulative anthracycline dose, chest radiation, cardiovascular risk factors, and 3 principal components. Statistical significance threshold of 6.93 × 10-6 accounted for multiple testing. Three independent cancer survivor populations (COG study, BMTSS [Blood or Marrow Transplant Survivor Study] and CCSS [Childhood Cancer Survivor Study]) were used to replicate gene-level associations and examine SNP-level associations from discovery genes using ordinal logistic, conditional logistic, and Cox regression models, respectively. Results: Median age at cancer diagnosis for discovery cases and control subjects was 6 years and 8 years, respectively. Gene-level association for P2RX7 (OR: 0.10; 95% CI: 0.04-0.27; P = 2.19 × 10-6) was successfully replicated (HR: 0.65; 95% CI: 0.47-0.90; P = 0.009) in the CCSS cohort. Additional signals were identified on TNIK, LRRK2, MEFV, NOBOX, and FBN3. Individual SNPs across all discovery genes, except FBN3, were replicated. Conclusions: In our study, SNP sets having 1 or no copies of P2RX7 variant alleles were associated with reduced risk of cardiomyopathy, presenting a potential therapeutic target to mitigate cardiac outcomes in cancer survivors.

8.
J Natl Cancer Inst ; 114(8): 1109-1116, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35698272

RESUMO

BACKGROUND: Adult survivors of childhood cancer are at increased risk of cardiac late effects. METHODS: Using whole-genome sequencing data from 1870 survivors of European ancestry in the St. Jude Lifetime Cohort (SJLIFE) study, genetic variants were examined for association with ejection fraction (EF) and clinically assessed cancer therapy-induced cardiac dysfunction (CCD). Statistically significant findings were validated in 301 SJLIFE survivors of African ancestry and 4020 survivors of European ancestry from the Childhood Cancer Survivor Study. All statistical tests were 2-sided. RESULTS: A variant near KCNK17 showed genome-wide significant association with EF (rs2815063-A: EF reduction = 1.6%; P = 2.1 × 10-8) in SJLIFE survivors of European ancestry, which replicated in SJLIFE survivors of African ancestry (EF reduction = 1.5%; P = .004). The rs2815063-A also showed a 1.80-fold (P = .008) risk of severe or disabling or life-threatening CCD and replicated in 4020 Childhood Cancer Survivor Study survivors of European ancestry (odds ratio = 1.40; P = .04). Notably, rs2815063-A was specifically associated among survivors exposed to doxorubicin only, with a stronger effect on EF (3.3% EF reduction) and CCD (2.97-fold). Whole blood DNA methylation data in 1651 SJLIFE survivors of European ancestry showed statistically significant correlation of rs2815063-A with dysregulation of KCNK17 enhancers (false discovery rate <5%), which replicated in 263 survivors of African ancestry. Consistently, the rs2815063-A was associated with KCNK17 downregulation based on RNA sequencing of 75 survivors. CONCLUSIONS: Leveraging the 2 largest cohorts of childhood cancer survivors in North America and survivor-specific polygenomic functional data, we identified a novel risk locus for CCD, which showed specificity with doxorubicin-induced cardiac dysfunction and highlighted dysregulation of KCNK17 as the likely molecular mechanism underlying this genetic association.


Assuntos
Sobreviventes de Câncer , Cardiopatias , Neoplasias , Adulto , Criança , Estudos de Coortes , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/epidemiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
Circulation ; 145(4): 279-294, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34874743

RESUMO

BACKGROUND: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G > A, L461L) and the intronic variant rs885004 in SLC28A3 (solute carrier family 28 member 3) as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity. However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in anthracycline-induced cardiotoxicity, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. METHODS: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were recruited again, and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic human-induced pluripotent stem cell-derived cardiomyocytes using a CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9). Fine-mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of the potential causal variant was done using cytosine base editor. SLC28A3-AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-sequencing after ribosomal RNA depletion. Drug screening was done using the Prestwick Chemical Library (n = 1200), followed by in vivo validation in mice. The effect of desipramine on doxorubicin cytotoxicity was also investigated in 8 cancer cell lines. RESULTS: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore-based fine-mapping and base editing, we identify a novel cardioprotective single nucleotide polymorphism, rs11140490, in the SLC28A3 locus; its effect is exerted via regulation of an antisense long noncoding RNA (SLC28A3-AS1) that overlaps with SLC28A3. Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. CONCLUSIONS: This work demonstrates the power of the human induced pluripotent stem cell model to take a single nucleotide polymorphism from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.


Assuntos
Cardiotoxicidade/fisiopatologia , Doxorrubicina/efeitos adversos , Variação Genética/genética , Animais , Modelos Animais de Doenças , Genômica , Humanos , Masculino , Camundongos
11.
Cell Stem Cell ; 28(12): 2076-2089.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34525346

RESUMO

Doxorubicin is an anthracycline chemotherapy agent effective in treating a wide range of malignancies, but its use is limited by dose-dependent cardiotoxicity. A recent genome-wide association study identified a SNP (rs2229774) in retinoic acid receptor-γ (RARG) as statistically associated with increased risk of anthracycline-induced cardiotoxicity. Here, we show that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with rs2229774 and who suffered doxorubicin-induced cardiotoxicity (DIC) are more sensitive to doxorubicin. We determine that the mechanism of this RARG variant effect is mediated via suppression of topoisomerase 2ß (TOP2B) expression and activation of the cardioprotective extracellular regulated kinase (ERK) pathway. We use patient-specific hiPSC-CMs as a drug discovery platform, determining that the RARG agonist CD1530 attenuates DIC, and we confirm this cardioprotective effect in an established in vivo mouse model of DIC. This study provides a rationale for clinical prechemotherapy genetic screening for rs2229774 and a foundation for the clinical use of RARG agonist treatment to protect cancer patients from DIC.


Assuntos
Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas , Animais , Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Miócitos Cardíacos
12.
Pharmacogenomics ; 22(1): 41-54, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448871

RESUMO

The anticancer agents of the anthracycline family are commonly associated with the potential to cause severe toxicity to the heart. To solve the question of why particular a patient is predisposed to anthracycline-induced cardiotoxicity (AIC), researchers have conducted numerous pharmacogenomic studies and identified more than 60 loci associated with AIC. To date, none of these identified loci have been developed into US FDA-approved biomarkers for use in routine clinical practice. With advances in the application of human-induced pluripotent stem cell-derived cardiomyocytes, sequencing technologies and genomic editing techniques, variants associated with AIC can now be validated in a human model. Here, we provide a comprehensive overview of known genetic variants associated with AIC from the perspective of how human-induced pluripotent stem cell-derived cardiomyocytes can be used to help better explain the genomic predilection to AIC.


Assuntos
Antraciclinas/efeitos adversos , Antineoplásicos/efeitos adversos , Cardiotoxicidade/genética , Predisposição Genética para Doença/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cardiotoxicidade/diagnóstico , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495337

RESUMO

Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell-derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.


Assuntos
Doxorrubicina/efeitos adversos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Terapia de Alvo Molecular , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Criança , Regulação da Expressão Gênica , Traumatismos Cardíacos/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Análise de Sequência de RNA
14.
J Thromb Thrombolysis ; 51(4): 890-896, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33051807

RESUMO

In spite of all the efforts for generating efficient pharmacological treatment options for cancer patients, the unwanted side effect of these substances on the cardiovascular system is becoming a major issue for cancer survivors. The fast pacing oncology field necessitate the quest for more accurate and reliable preclinical screenings. hiPSCs derived cardiomyocytes, endothelial and vascular smooth muscle cells provide unlimited source of physiologically relevant cells that could be used in the screening platforms. Cells derived from hiPSCs can measure drug induced alterations to different aspect of the heart including electrophysiology, contractility and structure. In this review, we will give an overview of the different in vivo and in vitro preclinical drug safety screenings. In following sections, we will focus on hiPSCs derived cardiomyocytes, endothelial and vascular smooth muscle cells and present the current knowledge of the application of these cells in unicellular cardiotoxicity assays. In the final part, we will focus on cardiac organoids as multi cell type platform and their role in cardiotoxicity screening of the chemotherapeutic drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Preparações Farmacêuticas , Cardiotoxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Miócitos Cardíacos
15.
Cancer Res ; 81(9): 2556-2565, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288658

RESUMO

Cardiomyopathy occurs at significantly higher rates in survivors of childhood cancer than the general population, but few studies have evaluated racial or ethnic disparities, and none have assessed potential genetic factors contributing to this outcome. In this study, childhood cancer survivors of African ancestry exposed to cardiotoxic therapies (anthracyclines and/or heart radiotherapy; n = 246) were compared with cardiotoxic-exposed survivors of European ancestry (n = 1,645) in the St. Jude Lifetime Cohort. Genetic variants were examined using whole-genome sequencing data among survivors of African ancestry, first based on ejection fraction (EF) as a continuous outcome, followed by clinical history of cardiomyopathy. Survivors of African ancestry showed 1.53- and 2.47-fold risks of CTCAE grade 2-4 and grade 3-4 cardiomyopathy than survivors of European ancestry. A novel locus at 1p13.2 showed significant association with EF (rs6689879*C: EF reduction = 4.2%; P = 2.8 × 10-8) in 246 survivors of African ancestry, which was successfully replicated in 1,645 survivors of European ancestry but with attenuated magnitude (EF reduction = 0.4%; P = 0.042). In survivors of African ancestry, rs6689879*C showed a 5.43-fold risk of cardiomyopathy and 1.31-fold risk in those of European ancestry. Among survivors of African ancestry with rs6689879*C and CTCAE grade 2-4 cardiomyopathy, the PHTF1 promoter region was hypomethylated. Similar results were observed in survivors of European ancestry, albeit with reduced magnitudes of hypomethylation among those with rs6689879*C and CTCAE grade 2-4 cardiomyopathy. PHTF1 was upregulated in human-induced pluripotent stem cell-derived cardiomyocytes from patients with doxorubicin-induced cardiomyopathy. These findings have potential implications for long-term cardiac surveillance and up-front cancer care for patients of African ancestry. SIGNIFICANCE: Childhood cancer survivors of African ancestry are at higher risk of cardiomyopathy than those of European ancestry, and a novel locus at 1p13.2 is associated with therapy-related cardiomyopathy specifically in African-American survivors.See related commentary by Brown and Richard, p. 2272.


Assuntos
Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Negro ou Afro-Americano/genética , Sobreviventes de Câncer , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/etnologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Cardiomiopatias/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Sequenciamento Completo do Genoma , Adulto Jovem
17.
Curr Cardiol Rep ; 22(8): 56, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32562096

RESUMO

PURPOSE OF REVIEW: In this article, we review the different model systems based on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and how they have been applied to identify the cardiotoxic effects of anticancer therapies. RECENT FINDINGS: Developments on 2D and 3D culture systems enabled the use of hiPSC-CMs as screening platforms for cardiotoxic effects of anticancer therapies such as anthracyclines, monoclonal antibodies, and tyrosine kinase inhibitors. Combined with computational approaches and higher throughput screening technologies, they have also enabled mechanistic studies and the search for cardioprotective strategies. As the population ages and cancer treatments become more effective, the cardiotoxic effects of anticancer drugs become a bigger problem leading to an increased role of cardio-oncology. In the past decade, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important platform for preclinical drug tests, elucidating mechanisms of action for drugs, and identifying cardioprotective pathways that could be further explored in the development of combined treatments. In this article, we highlight 2D and 3D model systems based on hiPSC-CMs that have been used to study the cardiotoxic effects of anticancer drugs, investigating their mechanisms of action and the potential for patient-specific prediction. We also present some of the important challenges and opportunities in the field, indicating possible future developments and how they could impact the landscape of cardio-oncology.


Assuntos
Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas , Humanos , Modelos Biológicos , Miócitos Cardíacos
18.
J Cardiovasc Transl Res ; 13(3): 377-389, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32078739

RESUMO

Chemotherapy-induced cardiovascular toxicity (CICT) is a well-established risk for cancer survivors and causes diseases such as heart failure, arrhythmia, vascular dysfunction, and atherosclerosis. As our knowledge of the precise cardiovascular risks of each chemotherapy agent has improved, it has become clear that genomics is one of the most influential predictors of which patients will experience cardiovascular toxicity. Most recently, GWAS-led, top-down approaches have identified novel genetic variants and their related genes that are statistically related to CICT. Importantly, the advent of human-induced pluripotent stem cell (hiPSC) models provides a system to experimentally test the effect of these genomic findings in vitro, query the underlying mechanisms, and develop novel strategies to mitigate the cardiovascular toxicity liabilities due to these mechanisms. Here we review the cardiovascular toxicities of chemotherapy drugs, discuss how these can be modeled in vitro, and suggest how these models can be used to validate genetic variants that predispose patients to these effects.


Assuntos
Antineoplásicos/toxicidade , Doenças Cardiovasculares/genética , Variação Genética , Genômica , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Cardiotoxicidade , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Células Cultivadas , Predisposição Genética para Doença , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Variantes Farmacogenômicos , Fenótipo , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
19.
Cardiovasc Res ; 115(5): 935-948, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30689737

RESUMO

The genomic predisposition to oncology-drug-induced cardiovascular toxicity has been postulated for many decades. Only recently has it become possible to experimentally validate this hypothesis via the use of patient-specific human-induced pluripotent stem cells (hiPSCs) and suitably powered genome-wide association studies (GWAS). Identifying the individual single nucleotide polymorphisms (SNPs) responsible for the susceptibility to toxicity from a specific drug is a daunting task as this precludes the use of one of the most powerful tools in genomics: comparing phenotypes to close relatives, as these are highly unlikely to have been treated with the same drug. Great strides have been made through the use of candidate gene association studies (CGAS) and increasingly large GWAS studies, as well as in vivo whole-organism studies to further our mechanistic understanding of this toxicity. The hiPSC model is a powerful technology to build on this work and identify and validate causal variants in mechanistic pathways through directed genomic editing such as CRISPR. The causative variants identified through these studies can then be implemented clinically to identify those likely to experience cardiovascular toxicity and guide treatment options. Additionally, targets identified through hiPSC studies can inform future drug development. Through careful phenotypic characterization, identification of genomic variants that contribute to gene function and expression, and genomic editing to verify mechanistic pathways, hiPSC technology is a critical tool for drug discovery and the realization of precision medicine in cardio-oncology.


Assuntos
Antineoplásicos/efeitos adversos , Cardiopatias/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Cardiotoxicidade , Células Cultivadas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Fenótipo , Locos de Características Quantitativas , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA