Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biofactors ; 49(1): 90-107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767656

RESUMO

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1ß, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3ß and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Camundongos , Masculino , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glucocorticoides , Fator de Necrose Tumoral alfa/metabolismo , Frutose , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Inflamação/metabolismo , Dieta , Insulina/metabolismo , Córtex Pré-Frontal/metabolismo , Plasticidade Neuronal , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Acta Biochim Pol ; 69(3): 647-655, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877942

RESUMO

Appetite regulation in the hypothalamus is dependent on hormonal signals from the periphery, such as insulin and leptin, and can be modulated by both sugar-rich diet and stress. Our aim was to explore the effects of 9-week feeding with 20% fructose solution combined with 4-week chronic unpredictable stress, on appetite-regulating neuropeptides and modulatory role of leptin and insulin signalling in the hypothalamus of male Wistar rats. Energy intake, body mass and adiposity, as well as circulatory leptin and insulin concentrations were assessed. Hypothalamic insulin signalling was analysed at the level of glucose transporters, as well as at the protein level and phosphorylation of insulin receptor, insulin receptor supstrate-1, Akt and ERK. Phosphorylation of AMP-activated protein kinase (AMPK), level of protein tyrosine phosphatase 1B (PTP1B) and expression of leptin receptor (ObRb) and suppressor of cytokine signalling 3 (SOCS3) were also analysed, together with the expression of orexigenic agouti-related protein (AgRP) and anorexigenic proopiomelanocortin (POMC) neuropeptides. The results revealed that stress decreased body mass and adiposity, blood leptin level and expression of ObRb, SOCS3 and POMC, while combination with fructose diet led to marked increase of AgRP, associated with AMPK phosphorylation despite increased plasma insulin. Reduced Akt, enhanced ERK activity and elevated PTP1B were also observed in the hypothalamus of these animals. In conclusion, our results showed that joint effects of fructose diet and stress are more deleterious than the separate ones, since inappropriate appetite control in the hypothalamus may provide a setting for the disturbed energy homeostasis in the long run.


Assuntos
Neuropeptídeos , Pró-Opiomelanocortina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Citocinas/metabolismo , Dieta , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina , Leptina , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Fosforilação , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Receptores para Leptina/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33431651

RESUMO

Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3ß (GSK3ß). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cistationina gama-Liase/genética , Glicogênio Sintase Quinase 3 beta/genética , Sulfeto de Hidrogênio/farmacologia , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organotiofosforados/farmacologia , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sulfatos/metabolismo , Proteínas tau/metabolismo
4.
Food Funct ; 11(2): 1455-1466, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31974538

RESUMO

Both a diet rich in fructose and chronic stress exposure induce metabolic and cardiovascular disturbances. The aim of this study was to examine the effects of the fructose-rich diet and chronic stress, separately and in combination, on insulin signaling and molecules regulating glycogen synthesis and ion transport in the heart, and to reveal whether these effects coincide with changes in glucocorticoid receptor (GR) activation. Male Wistar rats were subjected to 10% fructose in drinking water and/or to chronic unpredictable stress for 9 weeks. Protein expression and/or phosphorylation of the insulin receptor (IR), protein tyrosine phosphatase 1B, insulin receptor substrate 1 (IRS1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase-3ß (GSK-3ß) and Na+/K+-ATPase α-subunits in cardiac tissue were analyzed by western blot. GR distribution between cytosolic and nuclear fractions was also analyzed. The fructose-rich diet decreased the level of pERK1/2 (Thr202/Tyr204) and pGSK-3ß (Ser9) independently of stress, while chronic stress increased the IRS1 content and prevented the fructose diet-induced decrease of the pAkt (Ser473) level. The fructose-rich diet in combination with chronic stress reduced the protein content of cardiac IR and attenuated IRS1 upregulation. Separate treatments increased the protein content of Na+/K+-ATPase α1- and α2-subunits, while after combined treatment the α2 content was at the control level and the α1 content was lower than the control level. The effect of combined treatment on cardiac IR and α2-subunit expression could be mediated by increased GR nuclear accumulation. Our study provides new insights into the effects of chronic stress and a combination of the fructose diet and chronic stress on the studied molecules in the heart.


Assuntos
Frutose/farmacologia , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Coração/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Animais , Dieta , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico
5.
Cell Metab ; 30(6): 1152-1170.e13, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31735592

RESUMO

Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.


Assuntos
Envelhecimento/metabolismo , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sulfetos/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Cicloexanonas/química , Cisteína/química , Cisteína/metabolismo , Drosophila melanogaster , Escherichia coli , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Saccharomyces cerevisiae , Coloração e Rotulagem
6.
Angew Chem Int Ed Engl ; 58(24): 7997-8001, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30924279

RESUMO

H2 S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P-SSH). One family of proteins modified by H2 S are zinc finger (ZF) proteins, which contain multiple zinc-coordinating cysteine residues. Herein, we report the reactivity of H2 S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2 S was observed by low-temperature ESI-MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2 S to form superoxide, as detected by ESI-MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2 S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2 S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.


Assuntos
Sulfeto de Hidrogênio/química , Tristetraprolina/química , Dedos de Zinco , Zinco/química , Animais , Sítios de Ligação , Camundongos , Oxirredução , Sulfetos/química
7.
Horm Behav ; 96: 95-103, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919555

RESUMO

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine well known for its role in inflammation enhancement. However, a growing body of evidence is emerging on its role in energy metabolism in insulin sensitive tissues such as hippocampus, a brain region implicated in cognition, learning and memory. We hypothesized that genetic deletion of MIF may result in the specific behavioral changes, which may be linked tо impairments in brain or systemic insulin sensitivity by possible changes of the hippocampal synaptic plasticity. To assess memory, exploratory behavior and anxiety, three behavioral tests were applied on Mif gene-deficient (MIF-/-) and "wild type" C57BL/6J mice (WT). The parameters of systemic and hippocampal insulin sensitivity were also determined. The impact of MIF deficiency on hippocampal plasticity was evaluated by analyzing the level of synaptosomal polysialylated-neural cell adhesion molecule (PSA-NCAM) plasticity marker and mRNA levels of different neurotrophic factors. The results showed that MIF-/- mice exhibit emphasized anxiety-like behaviors, as well as impaired recognition memory, which may be hippocampus-dependent. This behavioral phenotype was associated with impaired systemic insulin sensitivity and attenuated hippocampal insulin sensitivity, characterized by increased inhibitory Ser307 phosphorylation of insulin receptor substrate 1 (IRS1). Finally, MIF-/- mice displayed a decreased hippocampal PSA-NCAM level and unchanged Bdnf, NT-3, NT-4 and Igf-1 mRNA levels. The results suggest that the lack of MIF leads to disturbances of systemic and hippocampal insulin sensitivity, which are possibly responsible for memory deficits and anxiety, most likely through decreased PSA-NCAM-mediated neuroplasticity rather than through neurotrophic factors.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/metabolismo , Resistência à Insulina/genética , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Exploratório/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética
8.
Appl Physiol Nutr Metab ; 42(12): 1254-1263, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28772089

RESUMO

The adipose tissue renin-angiotensin system (RAS) is proposed to be a pathophysiological link between adipose tissue dysregulation and metabolic disorders induced by a fructose-rich diet (FRD). RAS can act intracellularly. We hypothesized that adipocyte nuclear membranes possess angiotensin receptor types 1 and 2 (AT1R and AT2R), which couple to nuclear signaling pathways and regulate oxidative gene expression under FRD conditions. We analyzed the effect of consumption of 10% fructose solution for 9 weeks on biochemical parameters, adipocyte morphology, and expression of AT1R, AT2R, AT1R-associated protein (ATRAP), NADPH oxidase 4 (NOX4), matrix metalloproteinase-9 (MMP-9), and manganese superoxide dismutase (MnSOD) in adipose tissue of Wistar rats. We detected AT1R and AT2R in the nuclear fraction. FRD reduced the level of angiotensin receptors in the nucleus, while increased AT1R and decreased AT2R levels were observed in the plasma membrane. FRD increased the ATRAP mRNA level and decreased MnSOD mRNA and protein levels. No significant differences were observed for MMP-9 and NOX4 mRNA levels. These findings coincided with hyperleptinemia, elevated blood pressure and triglycerides, and unchanged visceral adipose tissue mass and morphology in FRD rats. Besides providing evidence for nuclear localization of angiotensin receptors in visceral adipose tissue, this study demonstrates the different effects of FRD on AT1R expression in different cellular compartments. Elevated blood pressure and decreased antioxidant capacity in visceral fat of fructose-fed rats were accompanied by an increased AT1R level in the plasma membrane, while upregulation of ATRAP and a decrease of nuclear membrane AT1R suggest an increased capacity for attenuation of excessive AT1R signaling and visceral adiposity.


Assuntos
Membrana Celular/química , Núcleo Celular/metabolismo , Carboidratos da Dieta , Frutose/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Adipócitos/química , Adipócitos/metabolismo , Animais , Peso Corporal , Núcleo Celular/química , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Exp Clin Endocrinol Diabetes ; 125(8): 522-529, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28407665

RESUMO

Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1ß mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1ß levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity.


Assuntos
Di-Hidrotestosterona/efeitos adversos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade Abdominal/metabolismo , Síndrome do Ovário Policístico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Gordura Intra-Abdominal/patologia , Obesidade Abdominal/induzido quimicamente , Obesidade Abdominal/patologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar
10.
Mol Cell Endocrinol ; 399: 22-31, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25179821

RESUMO

Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disorder characterized by hyperandrogenism, ovulatory dysfunction, visceral obesity and insulin resistance. We hypothesized that changes in glucocorticoid metabolism and signaling in the visceral adipose tissue may contribute to disturbances of lipid metabolism in the rat model of PCOS obtained by 5α-dihydrotestosterone (DHT) treatment of prepubertal female Wistar rats. The results confirmed that DHT treatment caused anovulation, obesity and dyslipidemia. Enhanced glucocorticoid prereceptor metabolism, assessed by elevated intracellular corticosterone and increased 11 beta-hydroxysteroid dehydrogenase type 1 mRNA and protein levels, was accompanied by glucocorticoid receptor (GR) nuclear accumulation. In concert with the increased expression of GR-regulated prolipogenic genes (lipin-1, sterol regulatory element binding protein 1, fatty acid synthase, phosphoenolpyruvate carboxykinase), histological analyses revealed hypertrophic adipocytes. The results suggest that glucocorticoids influence lipid metabolism in the visceral adipose tissue in the way that may contribute to pathogenesis of metabolic disturbances associated with PCOS.


Assuntos
Adipócitos/metabolismo , Androgênios/efeitos adversos , Di-Hidrotestosterona/efeitos adversos , Glucocorticoides/metabolismo , Gordura Intra-Abdominal/metabolismo , Síndrome do Ovário Policístico/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Adipócitos/patologia , Androgênios/farmacologia , Animais , Di-Hidrotestosterona/farmacologia , Ácido Graxo Sintase Tipo I/biossíntese , Feminino , Gordura Intra-Abdominal/patologia , Proteínas Nucleares/biossíntese , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese
11.
Nutr Neurosci ; 18(2): 66-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257416

RESUMO

OBJECTIVES: High fructose diet has been shown to have damaging effects on the hippocampus, a brain region critical for learning and memory. Fructose-induced hippocampal dysfunction may arise from insulin resistance and inflammation, and from concomitant changes in plasticity-related presynaptic proteins. We hypothesized that long-term access to fructose (10% and 60% solutions over a period of 9 weeks) affects insulin sensitivity, hippocampal inflammation, and synaptic plasticity in male Wistar rats. METHODS: We used the area under curve (AUC) glucose value and inhibitory Ser³°7 phosphorylation of hippocampal insulin receptor substrate 1 (IRS-1) as hallmarks of insulin resistance. To examine inflammatory state, we analysed protein levels and intracellular redistribution of glucocorticoid receptor and nuclear factor-κB (NFκB), as well as mRNA levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß). Polysialylated neural cell adhesion molecule (PSA-NCAM) protein was used as a synaptic plasticity marker. RESULTS: The results indicate different impacts of diverse fructose-enriched diets on insulin sensitivity and hippocampal inflammation and plasticity. Long-term ingestion of 10% fructose solution led to increase in AUC glucose value, as well as to elevation in hippocampal IRS-1 Ser³°7 phosphorylation and increase in IL-6 mRNA. In rats consuming 60% fructose, the level of PSA-NCAM was reduced, in parallel with augmented glucocorticoid signalization. DISCUSSION: The results showed that long-term consumption of 10% fructose solution induces hippocampal insulin resistance and inflammation, with no concomitant plasticity changes. Interestingly, rats fed with higher concentrations of fructose displayed impaired plastic response of the hippocampus, coinciding with augmented glucocorticoid signalling, which may provide a basis for cognitive deficits associated with metabolic syndrome.


Assuntos
Carboidratos da Dieta/efeitos adversos , Frutose/efeitos adversos , Hipocampo/metabolismo , Resistência à Insulina , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Ácidos Siálicos/metabolismo , Animais , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/metabolismo , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Hipocampo/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/imunologia , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Distribuição Aleatória , Ratos Wistar , Receptores de Glucocorticoides/metabolismo
12.
Eur J Nutr ; 53(6): 1393-402, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24389792

RESUMO

PURPOSE: High fructose consumption provokes metabolic perturbations that result in chronic low-grade inflammation and insulin resistance. Glucocorticoids, potent anti-inflammatory hormones, have important role in pathogenesis of diet-induced metabolic disturbances. The aim of this study was to examine the link between glucocorticoid metabolism and inflammation in the liver of fructose-fed rats. METHODS: Fructose-fed male Wistar rats consumed 60% fructose solution for 9 weeks. Glucocorticoid prereceptor metabolism and signaling were analyzed by measuring the level of 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) and hexose-6-phosphate dehydrogenase expression, as well as via determination of intracellular corticosterone concentration, glucocorticoid receptor subcellular distribution and expression of its target gene, phosphoenolpyruvate carboxykinase. Nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα) and the level of inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1) on Ser(307) were analyzed as markers of hepatic inflammation. The protein and/or mRNA levels of all examined molecules were assessed by Western blot and/or qPCR. RESULTS: Fructose-rich diet led to an enhancement of 11ßHSD1 protein level in the liver, without affecting intracellular level of corticosterone and downstream glucocorticoid signaling. On the other hand, proinflammatory state was achieved through NFκB activation and increased TNFα expression, while elevated level of inhibitory phosphorylation of IRS-1 was observed as an early hallmark of insulin resistance. CONCLUSION: High-fructose diet does not influence hepatic glucocorticoid signaling downstream of the receptor, permitting development of NFκB-driven inflammation. The alteration in 11ßHSD1 expression is most likely the consequence of enhanced inflammation, finally leading to disruption of insulin signaling in the rat liver.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Frutose/administração & dosagem , Fígado/fisiopatologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Ingestão de Energia , Ácidos Graxos não Esterificados/sangue , Frutose/efeitos adversos , Glucocorticoides/metabolismo , Inflamação/etiologia , Inflamação/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , NF-kappa B/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Br J Nutr ; 110(3): 456-65, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23286672

RESUMO

High fructose consumption is commonly associated with insulin resistance, disturbed glucose homeostasis and low-grade inflammation. Increased glucocorticoid production within adipose tissue has been implicated in the pathogenesis of fructose-induced metabolic syndrome. Immunosuppressive actions of glucocorticoids can be counter-regulated by macrophage migration inhibitory factor (MIF), which is recognised as a key molecule in metabolic inflammation. In the present study, we hypothesised that coordinated action of glucocorticoids and MIF can mediate the effects of a high-fructose diet on adipose tissue and liver inflammation. We examined the effects of long-term consumption of a 10% fructose solution on corticosterone (CORT) and MIF levels in rat blood plasma, liver and adipose tissue, as well as MIF and TNF-a mRNA expression and NF-kB activation in the same tissues. The high-fructose diet led to an increase in both CORT and MIF in the adipose tissue, and a highly significant positive correlation between their levels was observed. The attenuated NF-kB activation and unaltered TNF-a mRNA expression noticed in the adipose tissue could be interpreted as an outcome of the opposing actions of CORT and MIF. In contrast to adipose tissue, inflammation in the liver was characterised by NF-kB activation, an increased TNF-a mRNA level and unchanged levels of MIF protein, MIF mRNA and CORT. Overall, these findings suggest that a high-fructose diet differently affects the levels of glucocorticoids and MIF in the adipose tissue and liver, implicating that fructose over-consumption has tissue-specific effects on regulation of metabolic inflammation.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Corticosterona/metabolismo , Dieta/efeitos adversos , Frutose/efeitos adversos , Inflamação/etiologia , Fígado/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Animais , Sacarose Alimentar/efeitos adversos , Inflamação/metabolismo , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA