Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 101(2): 151220, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35366585

RESUMO

Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-mesenchymal transition (EMT) of the basement membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Membrana Basal/metabolismo , Colágeno , Humanos , Integrinas , Laminina , Proteínas de Membrana , Neoplasias/terapia
2.
J Biomol Struct Dyn ; 40(22): 11587-11593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34351836

RESUMO

Glutathione s-transferase (GST) is a class of enzymes that performs a wide array of biological functions. However, GST enzymes are most famously known for their roles in catalyzing the conjugation of reduced glutathione (GSH) to electrophilic centers on a wide variety of substrates to induce water-solubility to compounds as a protective antioxidant mechanism against toxic substances. In the present study, in vitro inhibition effects of coumarin, ascorbic acid, sodium sulfide, sodium azide, citric acid compounds, and Cd2+, Cu2+, Ni2+, Mg2+ metal ions against GST enzyme were determined. For this aim, the GST enzyme was purified from Vaccinium arctostapylous L. using the glutathione-agarose affinity chromatography and Sephadex G-100 gel filtration steps. The respective metals and chemical compounds were used at different concentrations for measuring their in vitro GST activity effects. The Ki values of these agents were determined as 0.450 ± 0.13, 15.05 ± 7.05, 0.009 ± 0.001, 0.022 ± 0.006, 0.120 ± 0.36, 0.150 ± 0.06, 0.223 ± 0.03, 0.002 ± 0.0003, and 0.136 ± 0.06 mM, respectively. Finally, the molecular docking interactions of the compounds with the GST target enzyme were evaluated using Autodock Tools-1.5.6. The effective molecular interactions of coumarin, citric acid, ascorbic acid, and sodium sulfide with GST target enzyme were found with their binding lowest energy affinities -4.62, -3.04, -2.53, and -1.67 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Assuntos
Glutationa Transferase , Metais , Glutationa Transferase/metabolismo , Simulação de Acoplamento Molecular , Metais/farmacologia , Glutationa
3.
Bioorg Chem ; 94: 103333, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677859

RESUMO

Achillea schischkinii Sosn. is an endemic plant species and it belongs to Asteraceae family. It is distributed widely in the Central and East Anatolia. This study was carried out for evaluation of the antioxidant activity, enzyme inhibition effect, elemental and phenolic content of A. schischkinii. Briefly, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase (α-Gly), and glutathione S-transferase (GST) enzymes were strongly inhibited by A. schischkinii. IC50 values for AChE, BChE, α-Gly, and GST enzymes were found as 19.3 mg/mL, 15.4 mg/mL, 69.3 mg/mL, and 34.7 mg/mL respectively. The antioxidant activity of the sample was evaluated by four different in vitro bioanalytical methods. Besides, the concentrations of twelve elements in A. schischkinii were analyzed by ICP-MS technique. Zn (50.6 ppm), Mn (23.0 ppm), and Cu (12.7 ppm) were found as major elements. Furthermore, catechin (20.8 µg/mg extract), trans-ferulic acid (18.3 µg/mg extract), and gallic acid (11.2 µg/mg extract) were characterized as major phenolic compounds by using HPLC. PRACTICAL APPLICATIONS: Acetylcholinesterase, butyrylcholinesterase, α-glycosidase, and glutathione s-transferase enzymes have crucial functions on metabolism. Enzyme inhibition or activation mostly attributed to some health disorders such as Alzheimer's disease, Diabetes mellitus, cancer and hyperglycemia. Phenolic contents are responsible for effective biological activity. This study evaluated the phenolic content and antioxidant activity of Achillea schischkinii as well as the inhibition effect against four metabolic enzymes. The results would be beneficial for using the plant in the food industry and pharmacological process.


Assuntos
Achillea/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/farmacologia , Espectrometria de Massas/métodos , Antineoplásicos/efeitos adversos , Antioxidantes/isolamento & purificação , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fenóis/análise
4.
J Food Biochem ; 43(3): e12776, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353544

RESUMO

Many taxa of Salvia genus have been used in herbal beverages, food flavoring, cosmetics, and pharmaceutical industry. In this paper, chemical compounds of Salvia eriophora (S. eriophora) leaves were determined by LC-MS/MS (Liquid Chromatography tandem Mass Spectrometry). Salvigenin (158.64 ± 10.8 mg/kg), fumaric acid (123.09 ± 8.54 mg/kg), and quercetagetin-3.6-dimethylether (37.85 ± 7.09 mg/kg) were detected as major compounds in the ethanol extract, whereas fumaric acid (555.96 ± 38.56 mg/kg), caffeic acid (103.62 ± 20.51 mg/kg), and epicatechin (83.19 ± 8.43 mg/kg) were detected as major compounds in the water extract. Furthermore, enzyme inhibition of S. eriophora against acetylcholinesterase (AChE), α-amylase (AM), butyrylcholinesterase (BChE), and α-glycosidase (AG) enzymes were detected. AChE, BChE, AG, and AM enzymes were very strongly inhibited by S. eriophora water extract (WES) and S. eriophora methanol extract (MES). Additionally, antioxidant potential of S. eriophora was determined by in vitro analytical methods. IC50 values of WES and MES were performed for radicals. PRACTICAL APPLICATIONS: Metabolic enzymes have crucial functions on living systems due to inhibition or activation of them mainly attributed with some health disorders. AChE, BChE, AM, and AG enzymes have important roles on carbohydrate metabolism or cholinergic pathways. The relation between enzyme inhibition effect and phenolic compounds or antioxidant activity need to be confirmed. Thus, many studies tested to clarify this relation for pure samples or plant extracts. To the best of our knowledge, this is the first report about inhibition effects of Salvia eriophora extracts against AChE, BChE, AM, and AG enzymes as well as their phenolic contents and antioxidant activities.


Assuntos
Antioxidantes/química , Inibidores da Colinesterase/química , Glicosídeo Hidrolases/antagonistas & inibidores , Compostos Fitoquímicos/química , Extratos Vegetais/química , Salvia/química , alfa-Amilases/antagonistas & inibidores , Acetilcolinesterase/química , Butirilcolinesterase/química , Glicosídeo Hidrolases/química , Cinética , alfa-Amilases/química
5.
Sci Pharm ; 85(2)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505129

RESUMO

Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of Nepeta trachonitica as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested. N. trachonitica appeared to have reasonable antioxidant activity and decent antimicrobial activity as indicated by the inhibition of the organisms' growth. The most susceptible species were Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 11229 among the organisms tested. Ethanol extract of the plant has the highest effect on Saccharomyces cerevisiae but no effect on Yarrowia lipolytica. The HPLC-MS/MS analysis showed that at least 11 major phenolic compounds of N. trachonitica exist, the major ones being rosmarinic acid, chlorogenic acid and quinic acid. The obtained results suggest that N. trachonitica could be a promising source for food and nutraceutical industries because of its antimicrobial and antioxidant properties and phenolic compounds.

6.
Food Chem Toxicol ; 48(8-9): 2227-38, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20685228

RESUMO

Propolis, an extremely complex resinous material, exhibits valuable pharmacological and biological properties attributed to the presence of polyphenols. In this study, we determined the antioxidant properties of lyophilized aqueous extract of propolis (LAEP) from Erzurum province of Turkey and correlated the values with total levels of polyphenolic compounds. In order to estimate the capacity of LAEP to act as antioxidants, we studied its 1,1-diphenyl-2-picryl-hydrazyl radicals (DPPH()), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS()(+)), N,N-dimethyl-p-phenylenediamine radicals (DMPD()(+)), superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)) scavenging activity, total antioxidant activity, ferric ions (Fe(3+)) and cupric ions (Cu(2+)) reducing ability, ferrous ions (Fe(2+)) chelating activity. LAEP inhibited 93.2% lipid peroxidation of a linoleic acid emulsion at 30 microg/mL concentration. On the other hand, BHA, BHT, alpha-tocopherol and trolox displayed 83.3%, 82.1%, 68.1% and 81.3% inhibition of peroxidation at the same concentration, respectively. Quantitative amounts of caffeic acid, ferulic acid, syringic acid, ellagic acid, quercetin, alpha-tocopherol, pyrogallol, p-hydroxybenzoic acid, vanillin, p-coumaric acid, gallic acid and ascorbic acid were detected by high performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). This study will bring an innovation for further studies with regard to the antioxidant properties of LAEP.


Assuntos
Antioxidantes/análise , Flavonoides/análise , Fenóis/análise , Própole/química , Anti-Infecciosos/análise , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/análise , Radicais Livres/metabolismo , Limite de Detecção , Peroxidação de Lipídeos , Polifenóis , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Turquia
7.
J Enzyme Inhib Med Chem ; 24(2): 395-405, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18830883

RESUMO

Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(.)) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ - Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 microg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH(.) scavenging, ABTS(.)+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+-Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.


Assuntos
Antioxidantes/metabolismo , Silimarina/metabolismo , Antioxidantes/química , Benzotiazóis/química , Benzotiazóis/metabolismo , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Quelantes/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Ferro/química , Peroxidação de Lipídeos , Picratos/química , Picratos/metabolismo , Silimarina/química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/metabolismo , Superóxidos/química , Superóxidos/metabolismo , Tiocianatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA