Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460939

RESUMO

The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.


Assuntos
Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Neoplasias , Domínios Proteicos , Fatores de Transcrição , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Modelos Moleculares , Estrutura Terciária de Proteína
2.
J Med Chem ; 65(20): 13714-13735, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36227159

RESUMO

PBRM1 is a subunit of the PBAF chromatin remodeling complex that uniquely contains six bromodomains. PBRM1 can operate as a tumor suppressor or tumor promoter. PBRM1 is a tumor promoter in prostate cancer, contributing to migratory and immunosuppressive phenotypes. Selective chemical probes targeting PBRM1 bromodomains are desired to elucidate the association between aberrant PBRM1 chromatin binding and cancer pathogenesis and the contributions of PBRM1 to immunotherapy. Previous PBRM1 inhibitors unselectively bind SMARCA2 and SMARCA4 bromodomains with nanomolar potency. We used our protein-detected NMR screening pipeline to screen 1968 fragments against the second PBRM1 bromodomain, identifying 17 hits with Kd values from 45 µM to >2 mM. Structure-activity relationship studies on the tightest-binding hit resulted in nanomolar inhibitors with selectivity for PBRM1 over SMARCA2 and SMARCA4. These chemical probes inhibit the association of full-length PBRM1 to acetylated histone peptides and selectively inhibit growth of a PBRM1-dependent prostate cancer cell line.


Assuntos
Histonas , Neoplasias da Próstata , Masculino , Humanos , Histonas/metabolismo , Domínios Proteicos , Cromatina , Neoplasias da Próstata/tratamento farmacológico , Carcinógenos , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Cell Adh Migr ; 15(1): 1-17, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33393839

RESUMO

A cytoskeletal protein keratin 19 (K19) is highly expressed in breast cancer but its effects on breast cancer cell mechanics are unclear. In MCF7 cells where K19 expression is ablated,we found that K19 is required to maintain rounded epithelial-like shape and tight cell-cell adhesion. A loss of K19 also lowered cell surface E-cadherin levels. Inhibiting internalization restored cell-cell adhesion of KRT19  knockout cells, suggesting that E-cadherin internalization contributed to defective adhesion. Ultimately, while K19 inhibited cell migration and invasion, it was required for cells to form colonies in suspension. Our results suggest that K19 stabilizes E-cadherin complexes at the cell membrane to maintain cell-cell adhesion which inhibits cell invasiveness but provides growth and survival advantages for circulating tumor cells.


Assuntos
Caderinas , Queratina-19 , Caderinas/genética , Adesão Celular , Membrana Celular , Humanos , Queratina-19/genética , Células MCF-7
5.
Sci Rep ; 9(1): 14650, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601969

RESUMO

Keratin 19 (K19) belongs to the keratin family of proteins, which maintains structural integrity of epithelia. In cancer, K19 is highly expressed in several types where it serves as a diagnostic marker. Despite the positive correlation between higher expression of K19 in tumor and worse patient survival, the role of K19 in breast cancer remains unclear. Therefore, we ablated K19 expression in MCF7 breast cancer cells and found that K19 was required for cell proliferation. Transcriptome analyses of KRT19 knockout cells identified defects in cell cycle progression and levels of target genes of E2F1, a key transcriptional factor for the transition into S phase. Furthermore, proper levels of cyclin dependent kinases (CDKs) and cyclins, including D-type cyclins critical for E2F1 activation, were dependent on K19 expression, and K19-cyclin D co-expression was observed in human breast cancer tissues. Importantly, K19 interacts with cyclin D3, and a loss of K19 resulted in decreased protein stability of cyclin D3 and sensitivity of cells towards CDK inhibitor-induced cell death. Overall, these findings reveal a novel function of K19 in the regulation of cell cycle program and suggest that K19 may be used to predict the efficacy of CDK inhibitors for treatments of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Queratina-19/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/uso terapêutico , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Ciclina D3/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Inativação de Genes , Humanos , Queratina-19/genética , Células MCF-7 , Inibidores de Proteínas Quinases/uso terapêutico , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA